TY - JOUR
T1 - A Comparative Study of the Resorption and Immune Response for Two Starch-Based Hemostat Powders
AU - Capella-Monsonís, Héctor
AU - Shridhar, Arthi
AU - Chirravuri, Bharadwaj
AU - Figucia, Matthew
AU - Learn, Greg
AU - Greenawalt, Keith
AU - Badylak, Stephen F.
N1 - Publisher Copyright:
© 2022 The Author(s)
PY - 2023/2
Y1 - 2023/2
N2 - Introduction: Powder hemostats are valuable adjuncts to minimize intraoperative and postoperative complications. In addition to promotion of rapid coagulation, resorption, and biocompatibility are desirable attributes. Plant starch-based polysaccharide hemostat powders are effective and widely used hemostatic agents, however their source and/or processing can affect characteristics such as in vivo degradability. For example, Arista is a purified/hydrolyzed starch powder that is rapidly resorbed in vivo; whereas PerClot shows slow resorption and preservation of a crystalline form. Materials and methods: In the present study, we compared the cellular response to the hemostatic agents PerClot and Arista both in vitro and in vivo, and used potato starch and urinary bladder extracellular matrix (UBM-ECM) as high crystallinity/slowly resorbable and prohealing controls, respectively. Results: All test articles and their degradation products were cytocompatible in vitro as measured by cell viability and metabolic activity of bone-marrow macrophages. PerClot induced a stronger proinflammatory, M1-like macrophage response in vitro (P < 0.001) than Arista, likely due to differences in source composition. Histologic examination of the in vivo surgical site showed the almost complete degradation of Arista after 12 h (day 0), whereas both PerClot and potato starch were still present at 28 d with crystals identifiable with polarized light microscopy and periodic acid Schiff (PAS) staining. Macrophage phenotype in vivo showed no differences between PerClot and Arista. Collagen deposition and mononuclear cell accumulation consistent with an early foreign body response were present around PerClot and potato starch crystals, whereas no such cell or connective tissue deposition was noted at the site of Arista or UBM-ECM placement.
AB - Introduction: Powder hemostats are valuable adjuncts to minimize intraoperative and postoperative complications. In addition to promotion of rapid coagulation, resorption, and biocompatibility are desirable attributes. Plant starch-based polysaccharide hemostat powders are effective and widely used hemostatic agents, however their source and/or processing can affect characteristics such as in vivo degradability. For example, Arista is a purified/hydrolyzed starch powder that is rapidly resorbed in vivo; whereas PerClot shows slow resorption and preservation of a crystalline form. Materials and methods: In the present study, we compared the cellular response to the hemostatic agents PerClot and Arista both in vitro and in vivo, and used potato starch and urinary bladder extracellular matrix (UBM-ECM) as high crystallinity/slowly resorbable and prohealing controls, respectively. Results: All test articles and their degradation products were cytocompatible in vitro as measured by cell viability and metabolic activity of bone-marrow macrophages. PerClot induced a stronger proinflammatory, M1-like macrophage response in vitro (P < 0.001) than Arista, likely due to differences in source composition. Histologic examination of the in vivo surgical site showed the almost complete degradation of Arista after 12 h (day 0), whereas both PerClot and potato starch were still present at 28 d with crystals identifiable with polarized light microscopy and periodic acid Schiff (PAS) staining. Macrophage phenotype in vivo showed no differences between PerClot and Arista. Collagen deposition and mononuclear cell accumulation consistent with an early foreign body response were present around PerClot and potato starch crystals, whereas no such cell or connective tissue deposition was noted at the site of Arista or UBM-ECM placement.
KW - Crystallinity
KW - Hemostat powders
KW - Immune reaction
KW - Inflammation
KW - Starch
UR - http://www.scopus.com/inward/record.url?scp=85140930932&partnerID=8YFLogxK
U2 - 10.1016/j.jss.2022.09.022
DO - 10.1016/j.jss.2022.09.022
M3 - Article
C2 - 36327703
AN - SCOPUS:85140930932
SN - 0022-4804
VL - 282
SP - 210
EP - 224
JO - Journal of Surgical Research
JF - Journal of Surgical Research
ER -