A dynamic view of trauma/hemorrhage-induced inflammation in mice: Principal drivers and networks

Qi Mi, Gregory Constantine, Cordelia Ziraldo, Alexey Solovyev, Andres Torres, Rajaie Namas, Timothy Bentley, Timothy R. Billiar, Ruben Zamora, Juan Carlos Puyana, Yoram Vodovotz*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

84 Scopus citations

Abstract

Background: Complex biological processes such as acute inflammation induced by trauma/hemorrhagic shock/ (T/HS) are dynamic and multi-dimensional. We utilized multiplexing cytokine analysis coupled with data-driven modeling to gain a systems perspective into T/HS. Methodology/Principal Findings: Mice were subjected to surgical cannulation trauma (ST) ± hemorrhagic shock (HS; 25 mmHg), and followed for 1, 2, 3, or 4 h in each case. Serum was assayed for 20 cytokines and NO2-/NO3-. These data were analyzed using four data-driven methods (Hierarchical Clustering Analysis [HCA], multivariate analysis [MA], Principal Component Analysis [PCA], and Dynamic Network Analysis [DyNA]). Using HCA, animals subjected to ST vs. ST + HS could be partially segregated based on inflammatory mediator profiles, despite a large overlap. Based on MA, interleukin [IL]-12p40/p70 (IL-12.total), monokine induced by interferon-γ (CXCL-9) [MIG], and IP-10 were the best discriminators between ST and ST/HS. PCA suggested that the inflammatory mediators found in the three main principal components in animals subjected to ST were IL-6, IL-10, and IL-13, while the three principal components in ST + HS included a large number of cytokines including IL-6, IL-10, keratinocyte-derived cytokine (CXCL-1) [KC], and tumor necrosis factor-α [TNF-α]. DyNA suggested that the circulating mediators produced in response to ST were characterized by a high degree of interconnection/complexity at all time points; the response to ST + HS consisted of different central nodes, and exhibited zero network density over the first 2 h with lesser connectivity vs. ST at all time points. DyNA also helped link the conclusions from MA and PCA, in that central nodes consisting of IP-10 and IL-12 were seen in ST, while MIG and IL-6 were central nodes in ST + HS. Conclusions/Significance: These studies help elucidate the dynamics of T/HS-induced inflammation, complementing other forms of dynamic mechanistic modeling. These methods should be applicable to the analysis of other complex biological processes.

Original languageEnglish
Article numbere19424
JournalPLoS ONE
Volume6
Issue number5
DOIs
StatePublished - 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'A dynamic view of trauma/hemorrhage-induced inflammation in mice: Principal drivers and networks'. Together they form a unique fingerprint.

Cite this