TY - JOUR
T1 - A fusion protein of hepatocyte growth factor enhances reconstruction of myocardium in a cardiac patch derived from porcine urinary bladder matrix
AU - Ota, Takeyoshi
AU - Gilbert, Thomas W.
AU - Schwartzman, David
AU - McTiernan, Charles F.
AU - Kitajima, Takashi
AU - Ito, Yoshihiro
AU - Sawa, Yoshiki
AU - Badylak, Stephen F.
AU - Zenati, Marco A.
N1 - Funding Information:
The project described was supported in part by NIHAR053603.
PY - 2008/11
Y1 - 2008/11
N2 - Objective: We sought to promote myocardial repair using urinary bladder matrix incorporated with a fusion protein that combined hepatocyte growth factor and fibronectin collagen-binding domain in a porcine model. Collagen-binding domain acted as an intermediary to promote hepatocyte growth factor binding and enhance hepatocyte growth factor stability within urinary bladder matrix. Methods: Urinary bladder matrix incorporated with collagen-binding domain and hepatocyte growth factor was implanted into the porcine right ventricular wall (F group) to repair a surgically created defect. Untreated urinary bladder matrix patches (U group) and Dacron patches (D group) served as controls (N = 5/group). Electromechanical mapping was performed 60 days after surgery. Linear local shortening was used to assess regional contractility, and electrical activity was recorded. Results: Linear local shortening was significantly improved in the F group compared with controls (F: 0.51% ± 1.57% [P < .05], U: -1.06% ± 1.84%, D: -2.72% ± 2.59%), whereas it was inferior to the normal myocardium (13.7% ± 4.3%; P < .05). Mean electrical activity was 1.49 ± 0.82 mV in the F group, which was statistically greater than in the control groups (U: 0.93 ± 0.71 mV; D: 0.30 ± 0.22 mV; P < .05) and less than the normal myocardium (8.24 ± 2.49 mV; P < .05). Histologic examination showed predominant α-smooth muscle actin positive cells with the F group showing the thickest layer and the D group showing the thinnest layer, with an endocardial endothelial monolayer. Scattered isolated islands of α-actinin positive cells were observed only in the F group, but not in the controls, suggesting the presence of cardiomyocytes. Conclusion: The collagen-binding domain/hepatocyte growth factor/urinary bladder matrix patch demonstrated increased contractility and electrical activity compared with urinary bladder matrix alone or Dacron and facilitated a homogeneous repopulation of host cells. Urinary bladder matrix incorporated with collagen-binding domain and hepatocyte growth factor may contribute to constructive myocardial remodeling.
AB - Objective: We sought to promote myocardial repair using urinary bladder matrix incorporated with a fusion protein that combined hepatocyte growth factor and fibronectin collagen-binding domain in a porcine model. Collagen-binding domain acted as an intermediary to promote hepatocyte growth factor binding and enhance hepatocyte growth factor stability within urinary bladder matrix. Methods: Urinary bladder matrix incorporated with collagen-binding domain and hepatocyte growth factor was implanted into the porcine right ventricular wall (F group) to repair a surgically created defect. Untreated urinary bladder matrix patches (U group) and Dacron patches (D group) served as controls (N = 5/group). Electromechanical mapping was performed 60 days after surgery. Linear local shortening was used to assess regional contractility, and electrical activity was recorded. Results: Linear local shortening was significantly improved in the F group compared with controls (F: 0.51% ± 1.57% [P < .05], U: -1.06% ± 1.84%, D: -2.72% ± 2.59%), whereas it was inferior to the normal myocardium (13.7% ± 4.3%; P < .05). Mean electrical activity was 1.49 ± 0.82 mV in the F group, which was statistically greater than in the control groups (U: 0.93 ± 0.71 mV; D: 0.30 ± 0.22 mV; P < .05) and less than the normal myocardium (8.24 ± 2.49 mV; P < .05). Histologic examination showed predominant α-smooth muscle actin positive cells with the F group showing the thickest layer and the D group showing the thinnest layer, with an endocardial endothelial monolayer. Scattered isolated islands of α-actinin positive cells were observed only in the F group, but not in the controls, suggesting the presence of cardiomyocytes. Conclusion: The collagen-binding domain/hepatocyte growth factor/urinary bladder matrix patch demonstrated increased contractility and electrical activity compared with urinary bladder matrix alone or Dacron and facilitated a homogeneous repopulation of host cells. Urinary bladder matrix incorporated with collagen-binding domain and hepatocyte growth factor may contribute to constructive myocardial remodeling.
UR - http://www.scopus.com/inward/record.url?scp=56249134506&partnerID=8YFLogxK
U2 - 10.1016/j.jtcvs.2008.07.008
DO - 10.1016/j.jtcvs.2008.07.008
M3 - Article
C2 - 19026821
AN - SCOPUS:56249134506
SN - 0022-5223
VL - 136
SP - 1309
EP - 1317
JO - Journal of Thoracic and Cardiovascular Surgery
JF - Journal of Thoracic and Cardiovascular Surgery
IS - 5
ER -