A liquid fraction of extracellular matrix inhibits glioma cell viability in vitro and in vivo

Mark H. Murdock, George S. Hussey, Jordan T. Chang, Ryan C. Hill, David G. Nascari, Aparna V. Rao, Kirk C. Hansen, Lesley M. Foley, T. Kevin Hitchens, Nduka M. Amankulor, Stephen F. Badylak*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Suppressive effects of extracellular matrix (ECM) upon various cancers have been reported. Glioblastoma multiforme has poor prognosis and new therapies are desired. This work investigated the effects of a saline-soluble fraction of urinary bladder ECM (ECM-SF) upon glioma cells. Viability at 24 hours in 1, 5, or 10 mg/mL ECM-SF-spiked media was evaluated in primary glioma cells (0319, 1015, 1119), glioma cell lines (A172, T98G, U87MG, C6), and brain cell lines (HCN-2, HMC3). Viability universally decreased at 5 and 10 mg/mL with U87MG, HCN-2, and HCM3 being least sensitive. Apoptosis in 0319 and 1119 cells was confirmed via NucView 488. Bi-weekly intravenous injection of ECM-SF (120 mg/kg) for 10 weeks in Sprague-Dawley rats did not affect weight, temperature, complete blood count, or multi-organ histology (N = 5). Intratumoral injection of ECM-SF (10 uL of 30 mg/ mL) at weeks 2–4 post C6 inoculation in Wistar rats increased median survival from 24.5 to 51 days (hazard ratio for death 0.22) and decreased average tumor volume at time of death from 349 mm3 to 90 mm3 over 10 weeks (N = 6). Mass spectrometry identified 2,562 protein species in ECM-SF, parent ECM, and originating tissue. These results demonstrate the suppressive effects of ECM on glioma and warrant further study.

Original languageEnglish
Pages (from-to)426-438
Number of pages13
JournalOncotarget
Volume13
Issue number1
DOIs
StatePublished - 2022
Externally publishedYes

Keywords

  • brain cancer
  • dynamic reciprocity
  • extracellular matrix
  • glioma treatment
  • tissue organization field theory

Fingerprint

Dive into the research topics of 'A liquid fraction of extracellular matrix inhibits glioma cell viability in vitro and in vivo'. Together they form a unique fingerprint.

Cite this