TY - JOUR
T1 - A novel analytical brain block tool to enable functional annotation of discriminatory transcript biomarkers among discrete regions of the fronto-limbic circuit in primate brain
AU - Dalgard, Clifton L.
AU - Jacobowitz, David M.
AU - Singh, Vijay K.
AU - Saleem, Kadharbatcha S.
AU - Ursano, Robert J.
AU - Starr, Joshua M.
AU - Pollard, Harvey B.
N1 - Publisher Copyright:
© 2014 Elsevier B.V. All rights reserved.
PY - 2015/3/10
Y1 - 2015/3/10
N2 - Fronto-limbic circuits in the primate brain are responsible for executive function, learning and memory, and emotions, including fear. Consequently, changes in gene expression in cortical and subcortical brain regions housing these circuits are associated with many important psychiatric and neurological disorders. While high quality gene expression profiles can be identified in brains from model organisms, primate brains have unique features such as Brodmann Area 25, which is absent in rodents, yet profoundly important in primates, including humans. The potential insights to be gained from studying the human brain are complicated by the fact that the post-mortem interval (PMI) is variable, and most repositories keep solid tissue in the deep frozen state. Consequently, sampling the important medial and internal regions of these brains is difficult. Here we describe a novel method for obtaining discrete regions from the fronto-limbic circuits of a 4 year old and a 5 year old, male, intact, frozen non-human primate (NHP) brain, for which the PMI is exactly known. The method also preserves high quality RNA, from which we use transcriptional profiling and a new algorithm to identify region-exclusive RNA signatures for Area 25 (NFκB and dopamine receptor signaling), the anterior cingulate cortex (LXR/RXR signaling), the amygdala (semaphorin signaling), and the hippocampus (Ca++ and retinoic acid signaling). The RNA signatures not only reflect function of the different regions, but also include highly expressed RNAs for which function is either poorly understood, or which generate proteins presently lacking annotated functions. We suggest that this new approach will provide a useful strategy for identifying changes in fronto-limbic system biology underlying normal development, aging and disease in the human brain.
AB - Fronto-limbic circuits in the primate brain are responsible for executive function, learning and memory, and emotions, including fear. Consequently, changes in gene expression in cortical and subcortical brain regions housing these circuits are associated with many important psychiatric and neurological disorders. While high quality gene expression profiles can be identified in brains from model organisms, primate brains have unique features such as Brodmann Area 25, which is absent in rodents, yet profoundly important in primates, including humans. The potential insights to be gained from studying the human brain are complicated by the fact that the post-mortem interval (PMI) is variable, and most repositories keep solid tissue in the deep frozen state. Consequently, sampling the important medial and internal regions of these brains is difficult. Here we describe a novel method for obtaining discrete regions from the fronto-limbic circuits of a 4 year old and a 5 year old, male, intact, frozen non-human primate (NHP) brain, for which the PMI is exactly known. The method also preserves high quality RNA, from which we use transcriptional profiling and a new algorithm to identify region-exclusive RNA signatures for Area 25 (NFκB and dopamine receptor signaling), the anterior cingulate cortex (LXR/RXR signaling), the amygdala (semaphorin signaling), and the hippocampus (Ca++ and retinoic acid signaling). The RNA signatures not only reflect function of the different regions, but also include highly expressed RNAs for which function is either poorly understood, or which generate proteins presently lacking annotated functions. We suggest that this new approach will provide a useful strategy for identifying changes in fronto-limbic system biology underlying normal development, aging and disease in the human brain.
KW - Amygdala
KW - Anterior cingulate cortex
KW - Area 25
KW - Hippocampus
KW - RNA-seq
KW - Systems
UR - http://www.scopus.com/inward/record.url?scp=84923341407&partnerID=8YFLogxK
U2 - 10.1016/j.brainres.2014.12.031
DO - 10.1016/j.brainres.2014.12.031
M3 - Article
C2 - 25529630
AN - SCOPUS:84923341407
SN - 0006-8993
VL - 1600
SP - 42
EP - 58
JO - Brain Research
JF - Brain Research
ER -