Activation of the peripheral immune system regulates neuronal aromatase in the adult zebra finch brain

Alyssa L. Pedersen, Cassie J. Gould, Colin J. Saldanha*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Estradiol provision via neural aromatization decreases neuro-inflammation and -degeneration, but almost nothing is known about the interactions between the peripheral immune system and brain aromatase. Given the vulnerability of the CNS we reasoned that brain aromatization may protect circuits from the threats of peripheral infection; perhaps shielding cells that are less resilient from the degeneration associated with peripheral infection or trauma. Lipopolysaccharide (LPS) or vehicle was administered peripherally to adult zebra finches and sickness behavior was recorded 2 or 24 hours later. The central transcription of cytokines and aromatase was measured, as were telencephalic aromatase activity and immunoreactive aromatase (24 hour time point only). Two hours post LPS, sickness-like behaviors increased, the transcription of IL-1β was higher in both sexes, and TNFα was elevated in females. 24 hours post-LPS, the behavior of LPS birds was similar to controls, and cytokines had returned to baseline, but aromatase mRNA and activity were elevated in both sexes. Immunocytochemistry revealed greater numbers of aromatase-expressing neurons in LPS birds. These data suggest that the activation of the immune system via peripheral endotoxin increases neuronal aromatase; a mechanism that may rapidly generate a potent anti-neuroinflammatory steroid in response to peripheral activation of the immune system.

Original languageEnglish
Article number10191
JournalScientific Reports
Issue number1
StatePublished - 1 Dec 2017
Externally publishedYes


Dive into the research topics of 'Activation of the peripheral immune system regulates neuronal aromatase in the adult zebra finch brain'. Together they form a unique fingerprint.

Cite this