TY - JOUR
T1 - Activity-dependent release of brain-derived neurotrophic factor underlies the neuroprotective effect of N-methyl-D-aspartate
AU - Marini, Ann M.
AU - Rabin, Stuart J.
AU - Lipsky, Robert H.
AU - Mocchetti, Italo
PY - 1998/11/6
Y1 - 1998/11/6
N2 - The molecular mechanism(s) of N-methyl-D-aspartate (NMDA) neuroprotective properties were investigated in primary cultures of cerebellar granule cell neurons. Granule cells express the neurotrophin receptor TrkB but not TrkA or TrkC. In these cells, the TrkB ligand brain- derived neurotrophic factor (BDNF) prevents glutamate toxicity. Therefore, we have tested the hypothesis that NMDA activates synthesis and release of BDNF, which may prevent glutamate toxicity by an autocrine loop. Exposure of granule cells for 2 and 5 min to a subtoxic concentration of NMDA (100 μM) evoked an accumulation of BDNF in the medium without concomitant changes in the intracellular levels of BDNF protein or mRNA. The increase in BDNF in the medium is followed by enhanced TrkB tyrosine phosphorylation, suggesting that NMDA increases the release of BDNF and therefore the activity of TrkB receptors. To examine whether BDNF and TrkB signaling play a role in the NMDA-mediated neuroprotective properties, neurons were exposed to soluble trkB receptor-IgG fusion protein, which is known to inhibit the activity of extracellular BDNF, and to K252a, a tyrosine kinase inhibitor. Both compounds blocked the NMDA-mediated TrkB tyrosine phosphorylation and subsequently its neuroprotective properties. We suggest that NMDA activates the TrkB receptor via a BDNF autocrine loop, resulting in neuronal survival.
AB - The molecular mechanism(s) of N-methyl-D-aspartate (NMDA) neuroprotective properties were investigated in primary cultures of cerebellar granule cell neurons. Granule cells express the neurotrophin receptor TrkB but not TrkA or TrkC. In these cells, the TrkB ligand brain- derived neurotrophic factor (BDNF) prevents glutamate toxicity. Therefore, we have tested the hypothesis that NMDA activates synthesis and release of BDNF, which may prevent glutamate toxicity by an autocrine loop. Exposure of granule cells for 2 and 5 min to a subtoxic concentration of NMDA (100 μM) evoked an accumulation of BDNF in the medium without concomitant changes in the intracellular levels of BDNF protein or mRNA. The increase in BDNF in the medium is followed by enhanced TrkB tyrosine phosphorylation, suggesting that NMDA increases the release of BDNF and therefore the activity of TrkB receptors. To examine whether BDNF and TrkB signaling play a role in the NMDA-mediated neuroprotective properties, neurons were exposed to soluble trkB receptor-IgG fusion protein, which is known to inhibit the activity of extracellular BDNF, and to K252a, a tyrosine kinase inhibitor. Both compounds blocked the NMDA-mediated TrkB tyrosine phosphorylation and subsequently its neuroprotective properties. We suggest that NMDA activates the TrkB receptor via a BDNF autocrine loop, resulting in neuronal survival.
UR - http://www.scopus.com/inward/record.url?scp=0032491387&partnerID=8YFLogxK
U2 - 10.1074/jbc.273.45.29394
DO - 10.1074/jbc.273.45.29394
M3 - Article
C2 - 9792641
AN - SCOPUS:0032491387
SN - 0021-9258
VL - 273
SP - 29394
EP - 29399
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 45
ER -