TY - JOUR
T1 - Alternate Immersion in Glucose to Produce Prolonged Hyperglycemia in Zebrafish
AU - McCarthy, Elizabeth
AU - Rowe, Cassie J.
AU - Crowley-Perry, Mikayla
AU - Connaughton, Victoria P.
N1 - Publisher Copyright:
© 2021 JoVE Journal of Visualized Experiments.
PY - 2021/5
Y1 - 2021/5
N2 - Zebrafish (Danio rerio) are an excellent model to investigate the effects of chronic hyperglycemia, a hallmark of Type II Diabetes Mellitus (T2DM). This alternate immersion protocol is a noninvasive, step-wise method of inducing hyperglycemia for up to eight weeks. Adult zebrafish are alternately exposed to sugar (glucose) and water for 24 hours each. The zebrafish begin treatment in a 1% glucose solution for 2 weeks, then a 2% solution for 2 weeks, and finally a 3% solution for the remaining 4 weeks. Compared to water-treated (stress) and mannitol-treated (osmotic) controls, glucose-treated zebrafish have significantly higher blood sugar levels. The glucose-treated zebrafish show blood sugar levels of 3-times that of controls, suggesting that after both four and eight weeks hyperglycemia can be achieved. Sustained hyperglycemia was associated with increased Glial Fibrillary Acidic Protein (GFAP) and increased nuclear factor Kappa B (NF-kB) levels in retina and decreased physiological responses, as well as cognitive deficits suggesting this protocol can be used to model disease complications.
AB - Zebrafish (Danio rerio) are an excellent model to investigate the effects of chronic hyperglycemia, a hallmark of Type II Diabetes Mellitus (T2DM). This alternate immersion protocol is a noninvasive, step-wise method of inducing hyperglycemia for up to eight weeks. Adult zebrafish are alternately exposed to sugar (glucose) and water for 24 hours each. The zebrafish begin treatment in a 1% glucose solution for 2 weeks, then a 2% solution for 2 weeks, and finally a 3% solution for the remaining 4 weeks. Compared to water-treated (stress) and mannitol-treated (osmotic) controls, glucose-treated zebrafish have significantly higher blood sugar levels. The glucose-treated zebrafish show blood sugar levels of 3-times that of controls, suggesting that after both four and eight weeks hyperglycemia can be achieved. Sustained hyperglycemia was associated with increased Glial Fibrillary Acidic Protein (GFAP) and increased nuclear factor Kappa B (NF-kB) levels in retina and decreased physiological responses, as well as cognitive deficits suggesting this protocol can be used to model disease complications.
UR - http://www.scopus.com/inward/record.url?scp=85107083488&partnerID=8YFLogxK
U2 - 10.3791/61935
DO - 10.3791/61935
M3 - Article
C2 - 34028434
AN - SCOPUS:85107083488
SN - 1940-087X
VL - 2021
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 171
M1 - e61935
ER -