Amyloid precursor protein in the cerebral cortex is rapidly and persistently induced by loss of subcortical innervation

W. Wallace*, S. T. Ahlers, J. Gotlib, V. Bragin, J. Sugar, R. Gluck, P. A. Shea, K. L. Davis, V. Haroutunian

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

115 Scopus citations


Lesions of the cholinergic nucleus basalis of Meynert elevate the ex vivo synthesis of β amyloid precursor protein (β-APP) in the cerebral cortex, a major projection region. We have found that this elevation is reflected by increased levels of β-APP mRNA. The induction is rapid (occurring 60 min after placement of the lesion) and persistent (remaining for at least 45 days after lesioning). Two other subcortical lesions, which result in reductions of cortical adrenergic and serotonergic innervation, similarly induced cortical β-APP. The β-APP induction is reversible and does not require loss of the subcortical neurons. Infusion of lidocaine, a calcium antagonist that disrupts neurotransmitter release, into the nucleus basalis of Meynert leads to the temporary reduction of released acetylcholine in the cortex. In this model, β-APP mRNA levels are elevated shortly after the infusion of lidocaine (90 min) but return to preinfusion levels 7 days after the lidocaine treatment. However, metabolic stresses of the brain, including chronic physostigmine, glucocorticoid, and diabetogenic treatments, fail to induce the β-APP response. These results suggest that the induction of β- APP is a specific response to the loss of functional innervation in the cortex. Importantly, these studies show that cortical β-APP is induced by lesions that mimic the neurochemical deficits most frequently observed in Alzheimer disease.

Original languageEnglish
Pages (from-to)8712-8716
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number18
StatePublished - 1993
Externally publishedYes


  • nucleus basalis of Meynert
  • rat


Dive into the research topics of 'Amyloid precursor protein in the cerebral cortex is rapidly and persistently induced by loss of subcortical innervation'. Together they form a unique fingerprint.

Cite this