TY - JOUR
T1 - Amyloid precursor protein in the cerebral cortex is rapidly and persistently induced by loss of subcortical innervation
AU - Wallace, W.
AU - Ahlers, S. T.
AU - Gotlib, J.
AU - Bragin, V.
AU - Sugar, J.
AU - Gluck, R.
AU - Shea, P. A.
AU - Davis, K. L.
AU - Haroutunian, V.
PY - 1993/9/15
Y1 - 1993/9/15
N2 - Lesions of the cholinergic nucleus basalis of Meynert elevate the ex vivo synthesis of β amyloid precursor protein (β-APP) in the cerebral cortex, a major projection region. We have found that this elevation is reflected by increased levels of β-APP mRNA. The induction is rapid (occurring 60 min after placement of the lesion) and persistent (remaining for at least 45 days after lesioning). Two other subcortical lesions, which result in reductions of cortical adrenergic and serotonergic innervation, similarly induced cortical β-APP. The β-APP induction is reversible and does not require loss of the subcortical neurons. Infusion of lidocaine, a calcium antagonist that disrupts neurotransmitter release, into the nucleus basalis of Meynert leads to the temporary reduction of released acetylcholine in the cortex. In this model, β-APP mRNA levels are elevated shortly after the infusion of lidocaine (90 min) but return to preinfusion levels 7 days after the lidocaine treatment. However, metabolic stresses of the brain, including chronic physostigmine, glucocorticoid, and diabetogenic treatments, fail to induce the β-APP response. These results suggest that the induction of β-APP is a specific response to the loss of functional innervation in the cortex. Importantly, these studies show that cortical β-APP is induced by lesions that mimic the neurochemical deficits most frequently observed in Alzheimer disease.
AB - Lesions of the cholinergic nucleus basalis of Meynert elevate the ex vivo synthesis of β amyloid precursor protein (β-APP) in the cerebral cortex, a major projection region. We have found that this elevation is reflected by increased levels of β-APP mRNA. The induction is rapid (occurring 60 min after placement of the lesion) and persistent (remaining for at least 45 days after lesioning). Two other subcortical lesions, which result in reductions of cortical adrenergic and serotonergic innervation, similarly induced cortical β-APP. The β-APP induction is reversible and does not require loss of the subcortical neurons. Infusion of lidocaine, a calcium antagonist that disrupts neurotransmitter release, into the nucleus basalis of Meynert leads to the temporary reduction of released acetylcholine in the cortex. In this model, β-APP mRNA levels are elevated shortly after the infusion of lidocaine (90 min) but return to preinfusion levels 7 days after the lidocaine treatment. However, metabolic stresses of the brain, including chronic physostigmine, glucocorticoid, and diabetogenic treatments, fail to induce the β-APP response. These results suggest that the induction of β-APP is a specific response to the loss of functional innervation in the cortex. Importantly, these studies show that cortical β-APP is induced by lesions that mimic the neurochemical deficits most frequently observed in Alzheimer disease.
KW - Nucleus basalis of Meynert
KW - Rat
UR - http://www.scopus.com/inward/record.url?scp=0027182224&partnerID=8YFLogxK
M3 - Article
C2 - 8378353
AN - SCOPUS:0027182224
SN - 0027-8424
VL - 90
SP - 8712
EP - 8716
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 18
ER -