An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU

Shamim Nemati*, Andre Holder, Fereshteh Razmi, Matthew D. Stanley, Gari D. Clifford, Timothy G. Buchman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

498 Scopus citations

Abstract

Objectives: Sepsis is among the leading causes of morbidity, mortality, and cost overruns in critically ill patients. Early intervention with antibiotics improves survival in septic patients. However, no clinically validated system exists for real-time prediction of sepsis onset. We aimed to develop and validate an Artificial Intelligence Sepsis Expert algorithm for early prediction of sepsis. Design: Observational cohort study. Setting: Academic medical center from January 2013 to December 2015. Patients: Over 31,000 admissions to the ICUs at two Emory University hospitals (development cohort), in addition to over 52,000 ICU patients from the publicly available Medical Information Mart for Intensive Care-III ICU database (validation cohort). Patients who met the Third International Consensus Definitions for Sepsis (Sepsis-3) prior to or within 4 hours of their ICU admission were excluded, resulting in roughly 27,000 and 42,000 patients within our development and validation cohorts, respectively. Interventions: None. Measurements and Main Results: High-resolution vital signs time series and electronic medical record data were extracted. A set of 65 features (variables) were calculated on hourly basis and passed to the Artificial Intelligence Sepsis Expert algorithm to predict onset of sepsis in the proceeding T hours (where T = 12, 8, 6, or 4). Artificial Intelligence Sepsis Expert was used to predict onset of sepsis in the proceeding T hours and to produce a list of the most significant contributing factors. For the 12-, 8-, 6-, and 4-hour ahead prediction of sepsis, Artificial Intelligence Sepsis Expert achieved area under the receiver operating characteristic in the range of 0.83-0.85. Performance of the Artificial Intelligence Sepsis Expert on the development and validation cohorts was indistinguishable. Conclusions: Using data available in the ICU in real-time, Artificial Intelligence Sepsis Expert can accurately predict the onset of sepsis in an ICU patient 4-12 hours prior to clinical recognition. A prospective study is necessary to determine the clinical utility of the proposed sepsis prediction model.

Original languageEnglish
Pages (from-to)547-553
Number of pages7
JournalCritical Care Medicine
Volume46
Issue number4
DOIs
StatePublished - 1 Apr 2018
Externally publishedYes

Keywords

  • Informatics
  • machine learning
  • organ failure
  • prognostication
  • sepsis

Fingerprint

Dive into the research topics of 'An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU'. Together they form a unique fingerprint.

Cite this