TY - JOUR
T1 - Analysis and validation of automated skull stripping tools
T2 - A validation study based on 296 MR images from the Honolulu Asia aging study
AU - Hartley, S. W.
AU - Scher, A. I.
AU - Korf, E. S.C.
AU - White, L. R.
AU - Launer, L. J.
N1 - Funding Information:
We acknowledge the assistance of David Rex (Laboratory of Neuro Imaging, UCLA). This project was partially funded by the Intramural Research Program at the National Institute on Aging.
PY - 2006/5/1
Y1 - 2006/5/1
N2 - As population-based epidemiologic studies may acquire images from thousands of subjects, automated image post-processing is needed. However, error in these methods may be biased and related to subject characteristics relevant to the research question. Here, we compare two automated methods of brain extraction against manually segmented images and evaluate whether method accuracy is associated with subject demographic and health characteristics. MRI data (n = 296) are from the Honolulu Asia Aging Study, a population-based study of elderly Japanese-American men. The intracranial space was manually outlined on the axial proton density sequence by a single operator. The brain was extracted automatically using BET (Brain Extraction Tool) and BSE (Brain Surface Extractor) on axial proton density images. Total intracranial volume was calculated for the manually segmented images (ticvM), the BET segmented images (ticvBET) and the BSE segmented images (ticvBSE). Mean ticvBSE was closer to that of ticvM, but ticvBET was more highly correlated with ticvM than ticvBSE. BSE had significant over (positive error) and underestimated (negative error) ticv, but net error was relatively low. BET had large positive and very low negative error. Method accuracy, measured in percent positive and negative error, varied slightly with age, head circumference, presence of the apolipoprotein eε4 polymorphism, subcortical and cortical infracts and enlarged ventricles. This epidemiologic approach to the assessment of potential bias in image post-processing tasks shows both skull-stripping programs performed well in this large image dataset when compared to manually segmented images. Although method accuracy was statistically associated with some subject characteristics, the extent of the misclassification (in terms of percent of brain volume) was small.
AB - As population-based epidemiologic studies may acquire images from thousands of subjects, automated image post-processing is needed. However, error in these methods may be biased and related to subject characteristics relevant to the research question. Here, we compare two automated methods of brain extraction against manually segmented images and evaluate whether method accuracy is associated with subject demographic and health characteristics. MRI data (n = 296) are from the Honolulu Asia Aging Study, a population-based study of elderly Japanese-American men. The intracranial space was manually outlined on the axial proton density sequence by a single operator. The brain was extracted automatically using BET (Brain Extraction Tool) and BSE (Brain Surface Extractor) on axial proton density images. Total intracranial volume was calculated for the manually segmented images (ticvM), the BET segmented images (ticvBET) and the BSE segmented images (ticvBSE). Mean ticvBSE was closer to that of ticvM, but ticvBET was more highly correlated with ticvM than ticvBSE. BSE had significant over (positive error) and underestimated (negative error) ticv, but net error was relatively low. BET had large positive and very low negative error. Method accuracy, measured in percent positive and negative error, varied slightly with age, head circumference, presence of the apolipoprotein eε4 polymorphism, subcortical and cortical infracts and enlarged ventricles. This epidemiologic approach to the assessment of potential bias in image post-processing tasks shows both skull-stripping programs performed well in this large image dataset when compared to manually segmented images. Although method accuracy was statistically associated with some subject characteristics, the extent of the misclassification (in terms of percent of brain volume) was small.
UR - http://www.scopus.com/inward/record.url?scp=33646478856&partnerID=8YFLogxK
U2 - 10.1016/j.neuroimage.2005.10.043
DO - 10.1016/j.neuroimage.2005.10.043
M3 - Article
C2 - 16376107
AN - SCOPUS:33646478856
SN - 1053-8119
VL - 30
SP - 1179
EP - 1186
JO - NeuroImage
JF - NeuroImage
IS - 4
ER -