TY - JOUR
T1 - Animal Models in Regulatory Breakpoint Determination
T2 - Review of New Drug Applications of Approved Antibiotics from 2014–2022
AU - Selig, Daniel
AU - Caridha, Diana
AU - Evans, Martin
AU - Kress, Adrian
AU - Lanteri, Charlotte
AU - Ressner, Roseanne
AU - DeLuca, Jesse
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/1
Y1 - 2024/1
N2 - We sought to better understand the utility and role of animal models of infection for Food and Drug Administration (FDA)-approved antibiotics for the indications of community-, hospital-acquired-, and ventilator-associated bacterial pneumonia (CABP, HABP, VABP), complicated urinary tract infection (cUTI), complicated intra-abdominal infection (cIAI), and acute bacterial skin and structural infections (ABSSSIs). We reviewed relevant documents from new drug applications (NDA) of FDA-approved antibiotics from 2014–2019 for the above indications. Murine neutropenic thigh infection models supported the choice of a pharmacokinetic-pharmacodynamic (PKPD) target in 11/12 NDAs reviewed. PKPD targets associated with at least a 1-log bacterial decrease were commonly considered ideal (10/12 NDAs) to support breakpoints. Plasma PK, as opposed to organ specific PK, was generally considered most reliable for PKPD correlation. Breakpoint determination was multi-disciplinary, accounting at minimum for epidemiologic cutoffs, non-clinical PKPD, clinical exposure-response and clinical efficacy. Non-clinical PKPD targets in combination with probability of target attainment (PTA) analyses generated breakpoints that were consistent with epidemiologic cutoffs and clinically derived breakpoints. In 6/12 NDAs, there was limited data to support clinically derived breakpoints, and hence the non-clinical PKPD targets in combination with PTA analyses played a heightened role in the final breakpoint determination. Sponsor and FDA breakpoint decisions were in general agreement. Disagreement may have arisen from differences in the definition of the optimal PKPD index or the ability to extrapolate protein binding from animals to humans. Overall, murine neutropenic thigh infection models supported the reviewed NDAs by providing evidence of pre-clinical efficacy and PKPD target determination, and played, in combination with PTA analysis, a significant role in breakpoint determination for labeling purposes.
AB - We sought to better understand the utility and role of animal models of infection for Food and Drug Administration (FDA)-approved antibiotics for the indications of community-, hospital-acquired-, and ventilator-associated bacterial pneumonia (CABP, HABP, VABP), complicated urinary tract infection (cUTI), complicated intra-abdominal infection (cIAI), and acute bacterial skin and structural infections (ABSSSIs). We reviewed relevant documents from new drug applications (NDA) of FDA-approved antibiotics from 2014–2019 for the above indications. Murine neutropenic thigh infection models supported the choice of a pharmacokinetic-pharmacodynamic (PKPD) target in 11/12 NDAs reviewed. PKPD targets associated with at least a 1-log bacterial decrease were commonly considered ideal (10/12 NDAs) to support breakpoints. Plasma PK, as opposed to organ specific PK, was generally considered most reliable for PKPD correlation. Breakpoint determination was multi-disciplinary, accounting at minimum for epidemiologic cutoffs, non-clinical PKPD, clinical exposure-response and clinical efficacy. Non-clinical PKPD targets in combination with probability of target attainment (PTA) analyses generated breakpoints that were consistent with epidemiologic cutoffs and clinically derived breakpoints. In 6/12 NDAs, there was limited data to support clinically derived breakpoints, and hence the non-clinical PKPD targets in combination with PTA analyses played a heightened role in the final breakpoint determination. Sponsor and FDA breakpoint decisions were in general agreement. Disagreement may have arisen from differences in the definition of the optimal PKPD index or the ability to extrapolate protein binding from animals to humans. Overall, murine neutropenic thigh infection models supported the reviewed NDAs by providing evidence of pre-clinical efficacy and PKPD target determination, and played, in combination with PTA analysis, a significant role in breakpoint determination for labeling purposes.
KW - Food and Drug Administration
KW - animal models
KW - antibiotics
KW - breakpoint determination
KW - clinical pharmacology
UR - http://www.scopus.com/inward/record.url?scp=85183444696&partnerID=8YFLogxK
U2 - 10.3390/jpm14010111
DO - 10.3390/jpm14010111
M3 - Article
AN - SCOPUS:85183444696
SN - 2075-4426
VL - 14
JO - Journal of Personalized Medicine
JF - Journal of Personalized Medicine
IS - 1
M1 - 111
ER -