Abstract
Many protein functions are conferred by posttranslational modifications, which allow proteins to perform specific cellular tasks. Protein microarrays enable specific detection of posttranslational modifications not attainable by gene arrays. Reverse-phase protein microarrays have been widely adopted for use with clinical biopsy specimens because they have many advantages including highly reproducible printing of cellular lysates onto array surfaces, built-in dilution curves, and direct detection using one antibody per analyte. This results in high-sensitivity, broad dynamic range, and favorable precision. Reverse-phase arrays have been restricted to a one slide/one antibody format. Although this is suitable for analyzing treatment effects over populations of samples, it is not well suited to individual patient assessments. One means of reaching this goal is the sector array format. Through the sector array, multiple antibody probes can be multiplexed on a single slide containing replicate immobilized aliquots from one patient. Thus, on one slide, a complete set of analytes can be characterized and used to support a therapy decision. This article describes a method for constructing sector arrays and demonstrates feasibility and adequate sensitivity applied to apoptosis related pathways.
Original language | English |
---|---|
Pages (from-to) | 91-99 |
Number of pages | 9 |
Journal | Clinical Proteomics |
Volume | 1 |
Issue number | 1 |
DOIs | |
State | Published - 2004 |
Externally published | Yes |
Keywords
- Clinical analysis
- Individual targeted therapy
- Molecular profiling
- Protein microarray
- Sector arrays