TY - JOUR
T1 - APPRAISE-HRI
T2 - AN ARTIFICIAL INTELLIGENCE ALGORITHM for TRIAGE of HEMORRHAGE CASUALTIES
AU - Stallings, Jonathan D.
AU - Laxminarayan, Srinivas
AU - Yu, Chenggang
AU - Kapela, Adam
AU - Frock, Andrew
AU - Cap, Andrew P.
AU - Reisner, Andrew T.
AU - Reifman, Jaques
N1 - Publisher Copyright:
© Wolters Kluwer Health, Inc. All rights reserved.
PY - 2023/8/1
Y1 - 2023/8/1
N2 - Background: Hemorrhage remains the leading cause of death on the battlefield. This study aims to assess the ability of an artificial intelligence triage algorithm to automatically analyze vital-sign data and stratify hemorrhage risk in trauma patients. Methods: Here, we developed the APPRAISE-Hemorrhage Risk Index (HRI) algorithm, which uses three routinely measured vital signs (heart rate and diastolic and systolic blood pressures) to identify trauma patients at greatest risk of hemorrhage. The algorithm preprocesses the vital signs to discard unreliable data, analyzes reliable data using an artificial intelligence-based linear regression model, and stratifies hemorrhage risk into low (HRI:I), average (HRI:II), and high (HRI:III). Results: To train and test the algorithm, we used 540 h of continuous vital-sign data collected from 1,659 trauma patients in prehospital and hospital (i.e., emergency department) settings. We defined hemorrhage cases (n = 198) as those patients who received ≥1 unit of packed red blood cells within 24 h of hospital admission and had documented hemorrhagic injuries. The APPRAISE-HRI stratification yielded a hemorrhage likelihood ratio (95% confidence interval) of 0.28 (0.13-0.43) for HRI:I, 1.00 (0.85-1.15) for HRI:II, and 5.75 (3.57-7.93) for HRI:III, suggesting that patients categorized in the low-risk (high-risk) category were at least 3-fold less (more) likely to have hemorrhage than those in the average trauma population. We obtained similar results in a cross-validation analysis. Conclusions: The APPRAISE-HRI algorithm provides a new capability to evaluate routine vital signs and alert medics to specific casualties who have the highest risk of hemorrhage, to optimize decision-making for triage, treatment, and evacuation.
AB - Background: Hemorrhage remains the leading cause of death on the battlefield. This study aims to assess the ability of an artificial intelligence triage algorithm to automatically analyze vital-sign data and stratify hemorrhage risk in trauma patients. Methods: Here, we developed the APPRAISE-Hemorrhage Risk Index (HRI) algorithm, which uses three routinely measured vital signs (heart rate and diastolic and systolic blood pressures) to identify trauma patients at greatest risk of hemorrhage. The algorithm preprocesses the vital signs to discard unreliable data, analyzes reliable data using an artificial intelligence-based linear regression model, and stratifies hemorrhage risk into low (HRI:I), average (HRI:II), and high (HRI:III). Results: To train and test the algorithm, we used 540 h of continuous vital-sign data collected from 1,659 trauma patients in prehospital and hospital (i.e., emergency department) settings. We defined hemorrhage cases (n = 198) as those patients who received ≥1 unit of packed red blood cells within 24 h of hospital admission and had documented hemorrhagic injuries. The APPRAISE-HRI stratification yielded a hemorrhage likelihood ratio (95% confidence interval) of 0.28 (0.13-0.43) for HRI:I, 1.00 (0.85-1.15) for HRI:II, and 5.75 (3.57-7.93) for HRI:III, suggesting that patients categorized in the low-risk (high-risk) category were at least 3-fold less (more) likely to have hemorrhage than those in the average trauma population. We obtained similar results in a cross-validation analysis. Conclusions: The APPRAISE-HRI algorithm provides a new capability to evaluate routine vital signs and alert medics to specific casualties who have the highest risk of hemorrhage, to optimize decision-making for triage, treatment, and evacuation.
KW - Artificial intelligence
KW - hemorrhage
KW - trauma
KW - triage algorithm
UR - http://www.scopus.com/inward/record.url?scp=85168428436&partnerID=8YFLogxK
U2 - 10.1097/SHK.0000000000002166
DO - 10.1097/SHK.0000000000002166
M3 - Article
C2 - 37335312
AN - SCOPUS:85168428436
SN - 1073-2322
VL - 60
SP - 199
EP - 205
JO - Shock
JF - Shock
IS - 2
ER -