TY - JOUR
T1 - Assessments of trunk postural control within a fall-prevention training program for service members with lower limb trauma and loss
AU - Acasio, Julian C.
AU - Guerrero, Noel A.
AU - Sheehan, Riley C.
AU - Butowicz, Courtney M.
AU - Tullos, Meghan L.
AU - Mahon, Caitlin E.
AU - Stewart, Julianne M.
AU - Zai, Claire Z.
AU - Kingsbury, Trevor D.
AU - Grabiner, Mark D.
AU - Dearth, Christopher L.
AU - Kaufman, Kenton R.
AU - Hendershot, Brad D.
N1 - Publisher Copyright:
© 2021
PY - 2022/2
Y1 - 2022/2
N2 - Background: Trunk postural control (TPC) is critical in maintaining balance following perturbations (i.e., avoiding falls), and impaired among persons with lower extremity trauma, contributing to elevated fall risk. Previously, a fall-prevention program improved TPC in individuals with unilateral transtibial amputation following trip-inducing perturbations. However, it is presently unclear if these improvements are task specific. Research question: Do improvements to TPC gained from a fall-prevention program translate to another task which assesses TPC in isolation (i.e., unstable sitting)? Secondarily, can isolated TPC be used to identify who would benefit most from the fall-prevention program? Methods: Twenty-five individuals (21 male/4 female) with lower extremity trauma, who participated in a larger fall-prevention program, were included in this analysis. Trunk flexion and flexion velocity quantified TPC following perturbation; accelerometer-based sway parameters quantified TPC during unstable sitting. A generalized linear mixed-effects model assessed training-induced differences in TPC after perturbation; a generalized linear model assessed differences in sway parameters following training. Spearman's rho related training-induced changes to TPC following perturbation (i.e., the difference in TPC measures at pre- and post-training assessments) with pre- vs. post-training changes to sway parameters during unstable sitting (i.e., the difference in sway parameters at pre- and post-training assessments) as well as pre-training sway parameters with the pre- vs. post-training differences in TPC following perturbation. Results: Following training, trunk flexion angles decreased, indicating improved TPC; however, sway parameters did not differ pre- and post-training. In addition, pre- vs. post-training differences in TPC following perturbation were neither strongly nor significantly correlated with sway parameters. Moreover, pre-training sway parameters did not correlate with pre- vs. post-training differences in trunk flexion/flexion velocity. Significance: Overall, these results indicate that improvements to TPC gained from fall-prevention training are task-specific and do not translate to other activities. Moreover, isolated TPC measures are not able to identify individuals that benefit most from the fall-prevention program.
AB - Background: Trunk postural control (TPC) is critical in maintaining balance following perturbations (i.e., avoiding falls), and impaired among persons with lower extremity trauma, contributing to elevated fall risk. Previously, a fall-prevention program improved TPC in individuals with unilateral transtibial amputation following trip-inducing perturbations. However, it is presently unclear if these improvements are task specific. Research question: Do improvements to TPC gained from a fall-prevention program translate to another task which assesses TPC in isolation (i.e., unstable sitting)? Secondarily, can isolated TPC be used to identify who would benefit most from the fall-prevention program? Methods: Twenty-five individuals (21 male/4 female) with lower extremity trauma, who participated in a larger fall-prevention program, were included in this analysis. Trunk flexion and flexion velocity quantified TPC following perturbation; accelerometer-based sway parameters quantified TPC during unstable sitting. A generalized linear mixed-effects model assessed training-induced differences in TPC after perturbation; a generalized linear model assessed differences in sway parameters following training. Spearman's rho related training-induced changes to TPC following perturbation (i.e., the difference in TPC measures at pre- and post-training assessments) with pre- vs. post-training changes to sway parameters during unstable sitting (i.e., the difference in sway parameters at pre- and post-training assessments) as well as pre-training sway parameters with the pre- vs. post-training differences in TPC following perturbation. Results: Following training, trunk flexion angles decreased, indicating improved TPC; however, sway parameters did not differ pre- and post-training. In addition, pre- vs. post-training differences in TPC following perturbation were neither strongly nor significantly correlated with sway parameters. Moreover, pre-training sway parameters did not correlate with pre- vs. post-training differences in trunk flexion/flexion velocity. Significance: Overall, these results indicate that improvements to TPC gained from fall-prevention training are task-specific and do not translate to other activities. Moreover, isolated TPC measures are not able to identify individuals that benefit most from the fall-prevention program.
KW - Extremity trauma
KW - Fall prevention
KW - Trunk postural control
UR - http://www.scopus.com/inward/record.url?scp=85101880164&partnerID=8YFLogxK
U2 - 10.1016/j.gaitpost.2021.02.020
DO - 10.1016/j.gaitpost.2021.02.020
M3 - Article
C2 - 33663914
AN - SCOPUS:85101880164
SN - 0966-6362
VL - 92
SP - 493
EP - 497
JO - Gait and Posture
JF - Gait and Posture
ER -