TY - JOUR
T1 - Association of a lithogenic Abcg5/Abcg8 allele on Chromosome 17 (Lith9) with cholesterol gallstone formation in PERA/EiJ mice
AU - Wittenburg, Henning
AU - Lyons, Malcolm A.
AU - Li, Renhua
AU - Kurtz, Ulrike
AU - Mössner, Joachim
AU - Churchill, Gary A.
AU - Carey, Martin C.
AU - Paigen, Beverly
PY - 2005/7
Y1 - 2005/7
N2 - To examine further the genetic determinants of cholesterol gallstone susceptibility in inbred mice, we performed quantitative trait locus (QTL) analysis of an intercross of gallstone-susceptible PERA/EiJ and gallstone-resistant DBA/2J inbred mice. Three hundred twenty-four F2 offspring were phenotyped for cholelithiasis during consumption of a lithogenic diet and genotyped using microsatellite markers. Linkage analysis was performed by interval mapping. In addition, we analyzed the combined datasets from this cross and from an independent cross of strain PERA and gallstone-resistant I/Ln mice. QTL mapping detected one significant new gallstone susceptibility (Lith) locus on Chromosome 13 (Lith15). A second significant QTL on Chr 6 (Lith16) confirmed a previous QTL. Furthermore, suggestive QTLs confirmed Lith loci from previous crosses on Chromosomes 1, 2, 5, 16 and X. QTL analysis of the dataset derived from the combined crosses increased the detection power and narrowed confidence intervals of Lith loci on Chromosomes 2, 6, 13, and 16. Moreover, the analysis of combined datasets revealed a shared QTL between both crosses on Chromosome 17 (Lith9). Significantly higher mRNA expression of Abcg5 and Abcg8 in strain PERA compared with strains I/Ln and DBA/2 further substantiated that the PERA allele of Abcg5/Abcg8 was responsible for lithogenicity underlying Lith9.
AB - To examine further the genetic determinants of cholesterol gallstone susceptibility in inbred mice, we performed quantitative trait locus (QTL) analysis of an intercross of gallstone-susceptible PERA/EiJ and gallstone-resistant DBA/2J inbred mice. Three hundred twenty-four F2 offspring were phenotyped for cholelithiasis during consumption of a lithogenic diet and genotyped using microsatellite markers. Linkage analysis was performed by interval mapping. In addition, we analyzed the combined datasets from this cross and from an independent cross of strain PERA and gallstone-resistant I/Ln mice. QTL mapping detected one significant new gallstone susceptibility (Lith) locus on Chromosome 13 (Lith15). A second significant QTL on Chr 6 (Lith16) confirmed a previous QTL. Furthermore, suggestive QTLs confirmed Lith loci from previous crosses on Chromosomes 1, 2, 5, 16 and X. QTL analysis of the dataset derived from the combined crosses increased the detection power and narrowed confidence intervals of Lith loci on Chromosomes 2, 6, 13, and 16. Moreover, the analysis of combined datasets revealed a shared QTL between both crosses on Chromosome 17 (Lith9). Significantly higher mRNA expression of Abcg5 and Abcg8 in strain PERA compared with strains I/Ln and DBA/2 further substantiated that the PERA allele of Abcg5/Abcg8 was responsible for lithogenicity underlying Lith9.
UR - http://www.scopus.com/inward/record.url?scp=24644511633&partnerID=8YFLogxK
U2 - 10.1007/s00335-005-0006-2
DO - 10.1007/s00335-005-0006-2
M3 - Article
C2 - 16151694
AN - SCOPUS:24644511633
SN - 0938-8990
VL - 16
SP - 495
EP - 504
JO - Mammalian Genome
JF - Mammalian Genome
IS - 7
ER -