AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip

Anna Medici, Amy Marshall-Colon, Elsa Ronzier, Wojciech Szponarski, Rongchen Wang, Alain Gojon, Nigel M. Crawford, Sandrine Ruffel, Gloria M. Coruzzi, Gabriel Krouk*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

202 Scopus citations

Abstract

Nitrogen and phosphorus are among the most widely used fertilizers worldwide. Nitrate (NO3-) and phosphate (PO43-) are also signalling molecules whose respective transduction pathways are being intensively studied. However, plants are continuously challenged with combined nutritional deficiencies, yet very little is known about how these signalling pathways are integrated. Here we report the identification of a highly NO3- -inducible NRT1.1-controlled GARP transcription factor, HRS1, document its genome-wide transcriptional targets, and validate its cis-regulatory elements. We demonstrate that this transcription factor and a close homologue repress the primary root growth in response to P deficiency conditions, but only when NO3- is present. This system defines a molecular logic gate integrating P and N signals. We propose that NO3- and P signalling converge via double transcriptional and post-transcriptional control of the same protein, HRS1.

Original languageEnglish
Article number6274
JournalNature Communications
Volume6
DOIs
StatePublished - 27 Feb 2015
Externally publishedYes

Fingerprint

Dive into the research topics of 'AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip'. Together they form a unique fingerprint.

Cite this