Abstract
Adequate hemostasis is achieved for many hemophilia A patients by infusion of plasma-derived or recombinant factor VIII (FVIII), but unfortunately, a significant subset of patients develop an immune response in which anti-FVIII antibodies, referred to clinically as "inhibitors," interfere with its procoagulant activity. Inhibitors are the subset of anti-FVIII antibodies that bind to surfaces on FVIII (B-cell epitopes) that are important for its proper functioning in coagulation. Less antigenic FVIII molecules may be designed by identifying and then modifying the amino acid sequences of inhibitor B-cell epitopes. Conversely, characterization of these epitopes can yield important information regarding functionally important surfaces on FVIII. The production of inhibitor antibodies is driven by T cells. T cells recognize FVIII as foreign when FVIII-derived peptides bind to major histocompatibility complex (MHC) class II molecules on the surface of antigen-presenting cells. The class II-peptide complexes must then be recognized by T-cell receptors (TCRs). T-cell stimulation requires sustained association of antigen-presenting cells and T cells through formation of a class II-peptide-TCR complex, and peptide sequences that mediate this association are termed "T-cell epitopes." MHC class II tetramers that bind FVIII-derived peptides and recognize antigen-specific TCRs are proving useful in the characterization of human leukocyte antigen-restricted T-cell responses to FVIII.
Original language | English |
---|---|
Pages (from-to) | 80-95 |
Number of pages | 16 |
Journal | Clinical Reviews in Allergy and Immunology |
Volume | 37 |
Issue number | 2 |
DOIs | |
State | Published - Oct 2009 |
Externally published | Yes |
Keywords
- B-cell epitopes
- Hemophilia A
- Inhibitory antibody
- T-cell immune responses