Bacillus pumilus B12 Degrades Polylactic Acid and Degradation Is Affected by Changing Nutrient Conditions

Kyle S. Bonifer, Xianfang Wen, Sahar Hasim, Elise K. Phillips, Rachel N. Dunlap, Eric R. Gann, Jennifer M. DeBruyn, Todd B. Reynolds*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

39 Scopus citations


Poly-lactic acid (PLA) is increasingly used as a biodegradable alternative to traditional petroleum-based plastics. In this study, we identify a novel agricultural soil isolate of Bacillus pumilus (B12) that is capable of degrading high molecular weight PLA films. This degradation can be detected on a short timescale, with significant degradation detected within 48-h by the release of L-lactate monomers, allowing for a rapid identification ideal for experimental variation. The validity of using L-lactate as a proxy for degradation of PLA films is corroborated by loss of rigidity and appearance of fractures in PLA films, as measured by atomic force microscopy and scanning electron microscopy (SEM), respectively. Furthermore, we have observed a dose-dependent decrease in PLA degradation in response to an amino acid/nucleotide supplement mix that is driven mainly by the nucleotide base adenine. In addition, amendments of the media with specific carbon sources increase the rate of PLA degradation, while phosphate and potassium additions decrease the rate of PLA degradation by B. pumilus B12. These results suggest B. pumilus B12 is adapting its enzymatic expression based on environmental conditions and that these conditions can be used to study the regulation of this process. Together, this work lays a foundation for studying the bacterial degradation of biodegradable plastics.

Original languageEnglish
Article number2548
JournalFrontiers in Microbiology
StatePublished - 22 Nov 2019
Externally publishedYes


  • Bacillus
  • assay
  • degradation
  • poly-lactic acid
  • regulation


Dive into the research topics of 'Bacillus pumilus B12 Degrades Polylactic Acid and Degradation Is Affected by Changing Nutrient Conditions'. Together they form a unique fingerprint.

Cite this