TY - JOUR
T1 - Bayesian modeling of pretransplant variables accurately predicts kidney graft survival
AU - Brown, Trevor S.
AU - Elster, Eric A.
AU - Stevens, Kristin
AU - Graybill, J. Christopher
AU - Gillern, Suzanne
AU - Phinney, Samuel
AU - Salifu, Moro O.
AU - Jindal, Rahul M.
N1 - Funding Information:
13. Hong Kong Chest Service. Tuberculosis Research Centre, Madras. British Medical Research Council. A controlled trial of 2-month, 3 month and 12-month regimens of chemotherapy for sputum-sme-ar-negative pulmonary tuberculosis. Results at 60 months. Am Rev Respir Dis 1984;130:23-8.
PY - 2012/12
Y1 - 2012/12
N2 - Introduction: Machine learning can enable the development of predictive models that incorporate multiple variables for a systems approach to organ allocation. We explored the principle of Bayesian Belief Network (BBN) to determine whether a predictive model of graft survival can be derived using pretransplant variables. Our hypothesis was that pretransplant donor and recipient variables, when considered together as a network, add incremental value to the classification of graft survival. Methods: We performed a retrospective analysis of 5,144 randomly selected patients (age ≥18, deceased donor kidney only, first-time recipients) from the United States Renal Data System database between 2000 and 2001. Using this dataset, we developed a machine-learned BBN that functions as a pretransplant organ-matching tool. Results: A network of 48 clinical variables was constructed and externally validated using an additional 2,204 patients of matching demographic characteristics. This model was able to predict graft failure within the first year or within 3 years (sensitivity 40%; specificity 80%; area under the curve, AUC, 0.63). Recipient BMI, gender, race, and donor age were amongst the pretransplant variables with strongest association to outcome. A 10-fold internal cross-validation showed similar results for 1-year (sensitivity 24%; specificity 80%; AUC 0.59) and 3-year (sensitivity 31%; specificity 80%; AUC 0.60) graft failure. Conclusion: We found recipient BMI, gender, race, and donor age to be influential predictors of outcome, while wait time and human leukocyte antigen matching were much less associated with outcome. BBN enabled us to examine variables from a large database to develop a robust predictive model.
AB - Introduction: Machine learning can enable the development of predictive models that incorporate multiple variables for a systems approach to organ allocation. We explored the principle of Bayesian Belief Network (BBN) to determine whether a predictive model of graft survival can be derived using pretransplant variables. Our hypothesis was that pretransplant donor and recipient variables, when considered together as a network, add incremental value to the classification of graft survival. Methods: We performed a retrospective analysis of 5,144 randomly selected patients (age ≥18, deceased donor kidney only, first-time recipients) from the United States Renal Data System database between 2000 and 2001. Using this dataset, we developed a machine-learned BBN that functions as a pretransplant organ-matching tool. Results: A network of 48 clinical variables was constructed and externally validated using an additional 2,204 patients of matching demographic characteristics. This model was able to predict graft failure within the first year or within 3 years (sensitivity 40%; specificity 80%; area under the curve, AUC, 0.63). Recipient BMI, gender, race, and donor age were amongst the pretransplant variables with strongest association to outcome. A 10-fold internal cross-validation showed similar results for 1-year (sensitivity 24%; specificity 80%; AUC 0.59) and 3-year (sensitivity 31%; specificity 80%; AUC 0.60) graft failure. Conclusion: We found recipient BMI, gender, race, and donor age to be influential predictors of outcome, while wait time and human leukocyte antigen matching were much less associated with outcome. BBN enabled us to examine variables from a large database to develop a robust predictive model.
KW - Bayesian Belief Network
KW - Graft failure
KW - Kidney transplant
KW - Multivariate analysis
KW - Renal allograft
KW - United States Renal Data System
UR - http://www.scopus.com/inward/record.url?scp=84870353215&partnerID=8YFLogxK
U2 - 10.1159/000345552
DO - 10.1159/000345552
M3 - Article
C2 - 23221105
AN - SCOPUS:84870353215
SN - 0250-8095
VL - 36
SP - 561
EP - 569
JO - American Journal of Nephrology
JF - American Journal of Nephrology
IS - 6
ER -