TY - JOUR
T1 - Biofilms and persistent wound infections in United States military trauma patients
T2 - A case-control analysis
AU - Akers, Kevin S.
AU - Mende, Katrin
AU - Cheatle, Kristelle A.
AU - Zera, Wendy C.
AU - Yu, Xin
AU - Beckius, Miriam L.
AU - Aggarwal, Deepak
AU - Li, Ping
AU - Sanchez, Carlos J.
AU - Wenke, Joseph C.
AU - Weintrob, Amy C.
AU - Tribble, David R.
AU - Murray, Clinton K.
N1 - Funding Information:
Part of this material was presented at 2013 ID Week: A Joint Meeting of IDSA, SHEA, HIVMA, and PIDs, October 2–6, 2013, San Francisco, CA. Support for this work (IDCRP-024) was provided by the Infectious Disease Clinical Research Program (IDCRP), a Department of Defense program executed through the Uniformed Services University of the Health Sciences. This project has been funded by the Department of Defense Global Emerging Infections Surveillance and Response System (GEIS), a division of the Armed Forces Health Surveillance Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, under Inter-Agency Agreement Y1-AI-5072, and the Department of the Navy under the Wounded, Ill, and Injured Program. We are indebted to the Infectious Disease Clinical Research Program TIDOS study team of clinical coordinators, microbiology technicians, data managers, clinical site managers, and administrative support personnel for their tireless hours to ensure the success of this project. We would like to thank M. Leigh Carson for her assistance in the preparation of the manuscript.
PY - 2014/4/8
Y1 - 2014/4/8
N2 - Background: Complex traumatic injuries sustained by military personnel, particularly when involving extremities, often result in infectious complications and substantial morbidity. One factor that may further impair patient recovery is the persistence of infections. Surface-attached microbial communities, known as biofilms, may play a role in hindering the management of infections; however, clinical data associating biofilm formation with persistent or chronic infections are lacking. Therefore, we evaluated the production of bacterial biofilms as a potential risk factor for persistent infections among wounded military personnel.Methods: Bacterial isolates and clinical data from military personnel with deployment-related injuries were collected through the Trauma Infectious Disease Outcomes Study. The study population consisted of patients with diagnosed skin and soft-tissue infections. Cases (wounds with bacterial isolates of the same organism collected 14 days apart) were compared to controls (wounds with non-recurrent bacterial isolates), which were matched by organism and infectious disease syndrome. Potential risk factors for persistent infections, including biofilm formation, were examined in a univariate analysis. Data are expressed as odds ratios (OR; 95% confidence interval [CI]).Results: On a per infected wound basis, 35 cases (representing 25 patients) and 69 controls (representing 60 patients) were identified. Eight patients with multiple wounds were utilized as both cases and controls. Overall, 235 bacterial isolates were tested for biofilm formation in the case-control analysis. Biofilm formation was significantly associated with infection persistence (OR: 29.49; CI: 6.24-infinity) in a univariate analysis. Multidrug resistance (OR: 5.62; CI: 1.02-56.92), packed red blood cell transfusion requirements within the first 24 hours (OR: 1.02; CI: 1.01-1.04), operating room visits prior to and on the date of infection diagnosis (OR: 2.05; CI: 1.09-4.28), anatomical location of infected wound (OR: 5.47; CI: 1.65-23.39), and occurrence of polymicrobial infections (OR: 69.71; CI: 15.39-infinity) were also significant risk factors for persistent infections.Conclusions: We found that biofilm production by clinical strains is significantly associated with the persistence of wound infections. However, the statistical power of the analysis was limited due to the small sample size, precluding a multivariate analysis. Further data are needed to confirm biofilm formation as a risk factor for persistent wound infections.
AB - Background: Complex traumatic injuries sustained by military personnel, particularly when involving extremities, often result in infectious complications and substantial morbidity. One factor that may further impair patient recovery is the persistence of infections. Surface-attached microbial communities, known as biofilms, may play a role in hindering the management of infections; however, clinical data associating biofilm formation with persistent or chronic infections are lacking. Therefore, we evaluated the production of bacterial biofilms as a potential risk factor for persistent infections among wounded military personnel.Methods: Bacterial isolates and clinical data from military personnel with deployment-related injuries were collected through the Trauma Infectious Disease Outcomes Study. The study population consisted of patients with diagnosed skin and soft-tissue infections. Cases (wounds with bacterial isolates of the same organism collected 14 days apart) were compared to controls (wounds with non-recurrent bacterial isolates), which were matched by organism and infectious disease syndrome. Potential risk factors for persistent infections, including biofilm formation, were examined in a univariate analysis. Data are expressed as odds ratios (OR; 95% confidence interval [CI]).Results: On a per infected wound basis, 35 cases (representing 25 patients) and 69 controls (representing 60 patients) were identified. Eight patients with multiple wounds were utilized as both cases and controls. Overall, 235 bacterial isolates were tested for biofilm formation in the case-control analysis. Biofilm formation was significantly associated with infection persistence (OR: 29.49; CI: 6.24-infinity) in a univariate analysis. Multidrug resistance (OR: 5.62; CI: 1.02-56.92), packed red blood cell transfusion requirements within the first 24 hours (OR: 1.02; CI: 1.01-1.04), operating room visits prior to and on the date of infection diagnosis (OR: 2.05; CI: 1.09-4.28), anatomical location of infected wound (OR: 5.47; CI: 1.65-23.39), and occurrence of polymicrobial infections (OR: 69.71; CI: 15.39-infinity) were also significant risk factors for persistent infections.Conclusions: We found that biofilm production by clinical strains is significantly associated with the persistence of wound infections. However, the statistical power of the analysis was limited due to the small sample size, precluding a multivariate analysis. Further data are needed to confirm biofilm formation as a risk factor for persistent wound infections.
KW - Biofilm
KW - Chronic infections
KW - Extremity wound infections
KW - Persistent infections
KW - Risk factors
KW - Trauma-related infections
UR - http://www.scopus.com/inward/record.url?scp=84899491124&partnerID=8YFLogxK
U2 - 10.1186/1471-2334-14-190
DO - 10.1186/1471-2334-14-190
M3 - Article
C2 - 24712544
AN - SCOPUS:84899491124
SN - 1471-2334
VL - 14
JO - BMC Infectious Diseases
JF - BMC Infectious Diseases
IS - 1
M1 - 190
ER -