Biomarker identification and effect estimation on schizophrenia – A high dimensional data analysis

Yuanzhang Li*, Robert Yolken, David N. Cowan, Michael R. Boivin, Tianqing Liu, David W. Niebuhr

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Biomarkers have been examined in schizophrenia research for decades. Medical morbidity and mortality rates, as well as personal and societal costs, are associated with schizophrenia patients. The identification of biomarkers and alleles, which often have a small effect individually, may help to develop new diagnostic tests for early identification and treatment. Currently, there is not a commonly accepted statistical approach to identify predictive biomarkers from high dimensional data. We used space decompositiongradient-regression (DGR) method to select biomarkers, which are associated with the risk of schizophrenia. Then, we used the gradient scores, generated from the selected biomarkers, as the prediction factor in regression to estimate their effects. We also used an alternative approach, classification and regression tree, to compare the biomarker selected by DGR and found about 70% of the selected biomarkers were the same. However, the advantage of DGR is that it can evaluate individual effects for each biomarker from their combined effect. In DGR analysis of serum specimens of US military service members with a diagnosis of schizophrenia from 1992 to 2005 and their controls, Alpha-1-Antitrypsin (AAT), Interleukin-6 receptor (IL-6r) and connective tissue growth factor were selected to identify schizophrenia for males; and AAT, Apolipoprotein B and Sortilin were selected for females. If these findings from military subjects are replicated by other studies, they suggest the possibility of a novel biomarker panel as an adjunct to earlier diagnosis and initiation of treatment.

Original languageEnglish
Article number75
Pages (from-to)1-8
Number of pages8
JournalFrontiers in Public Health
Volume3
DOIs
StatePublished - May 2015
Externally publishedYes

Keywords

  • Biomarker identification
  • Gradient
  • High dimensional data
  • Schizophrenia
  • Space decomposition

Fingerprint

Dive into the research topics of 'Biomarker identification and effect estimation on schizophrenia – A high dimensional data analysis'. Together they form a unique fingerprint.

Cite this