TY - JOUR
T1 - Blood-Based Brain and Global Biomarker Changes after Combined Hypoxemia and Hemorrhagic Shock in a Rat Model of Penetrating Ballistic-Like Brain Injury
AU - Li, Xue
AU - Pierre, Kevin
AU - Yang, Zhihui
AU - Nguyen, Lynn
AU - Johnson, Gabrielle
AU - Venetucci, Juliana
AU - Torres, Isabel
AU - Lucke-Wold, Brandon
AU - Shi, Yuan
AU - Boutte, Angela
AU - Shear, Deborah
AU - Leung, Lai Yee
AU - Wang, Kevin K.W.
N1 - Funding Information:
This work was supported by departmental funding from the Center for Military Psychiatry and Neuroscience at the Walter Reed Army Institute of Research and from the Department of Emergency Medicine at the University of Florida.
Publisher Copyright:
© Xue Li et al., 2021; Published by Mary Ann Liebert, Inc. 2021.
PY - 2021/8/1
Y1 - 2021/8/1
N2 - Penetrating traumatic brain injury (pTBI) often occurs with systemic insults such as hemorrhagic shock (HS) and hypoxemic (HX). This study examines rat models of penetrating ballistic-like brain injury (PBBI) and HX+HS to assess whether the blood levels of brain and systemic response biomarkers phosphorylated neurofilament-heavy protein (pNF-H), neurofilament-light protein (NF-L), αII-spectrin, heat shock protein (HSP70), and high mobility group box 1 protein (HMGB1) can distinguish pTBI from systemic insults and guide in pTBI diagnosis, prognosis, and monitoring. Thirty rats were randomly assigned to sham, PBBI, HS+HX, and PBBI+HS+HX groups. PBBI and sham groups underwent craniotomy with and without probe insertion and balloon expansion, respectively. HX and HS was then simulated by blood withdrawal and fraction of inspired oxygen (FIO2) reduction. Biomarker serum concentrations were determined at one (D1) and two (D2) days post-injury with enzyme-linked immunosorbent assay (ELISA) methods. Axonal injury-linked biomarkers pNF-H and NF-L serum levels in PBBI groups were higher than those in sham and HX+HS groups at D1 and D2 post-injury. The same was true for PBBI+HX+HS compared with sham (D2 only for pNF-H) and HX+HS groups. However, pNF-H and NF-L levels in PBBI+HX+HS groups were not different than their PBBI counterparts. At D1, αII-spectrin levels in the HX+HS and PBBI+HS+HX groups were higher than the sham groups. αII-spectrin levels in the HX+HS group were higher than the PBBI group. This suggests HX+HS as the common insult driving αII-spectrin elevations. In conclusion, pNF-H and NF-L may serve as specific serum biomarkers of pTBI in the presence or absence of systemic insults. αII-spectrin may be a sensitive acute biomarker in detecting systemic insults occurring alone or with pTBI.
AB - Penetrating traumatic brain injury (pTBI) often occurs with systemic insults such as hemorrhagic shock (HS) and hypoxemic (HX). This study examines rat models of penetrating ballistic-like brain injury (PBBI) and HX+HS to assess whether the blood levels of brain and systemic response biomarkers phosphorylated neurofilament-heavy protein (pNF-H), neurofilament-light protein (NF-L), αII-spectrin, heat shock protein (HSP70), and high mobility group box 1 protein (HMGB1) can distinguish pTBI from systemic insults and guide in pTBI diagnosis, prognosis, and monitoring. Thirty rats were randomly assigned to sham, PBBI, HS+HX, and PBBI+HS+HX groups. PBBI and sham groups underwent craniotomy with and without probe insertion and balloon expansion, respectively. HX and HS was then simulated by blood withdrawal and fraction of inspired oxygen (FIO2) reduction. Biomarker serum concentrations were determined at one (D1) and two (D2) days post-injury with enzyme-linked immunosorbent assay (ELISA) methods. Axonal injury-linked biomarkers pNF-H and NF-L serum levels in PBBI groups were higher than those in sham and HX+HS groups at D1 and D2 post-injury. The same was true for PBBI+HX+HS compared with sham (D2 only for pNF-H) and HX+HS groups. However, pNF-H and NF-L levels in PBBI+HX+HS groups were not different than their PBBI counterparts. At D1, αII-spectrin levels in the HX+HS and PBBI+HS+HX groups were higher than the sham groups. αII-spectrin levels in the HX+HS group were higher than the PBBI group. This suggests HX+HS as the common insult driving αII-spectrin elevations. In conclusion, pNF-H and NF-L may serve as specific serum biomarkers of pTBI in the presence or absence of systemic insults. αII-spectrin may be a sensitive acute biomarker in detecting systemic insults occurring alone or with pTBI.
KW - biomarker
KW - brain injury
KW - global injury markers
KW - organ injury
UR - http://www.scopus.com/inward/record.url?scp=85125507689&partnerID=8YFLogxK
U2 - 10.1089/neur.2021.0006
DO - 10.1089/neur.2021.0006
M3 - Article
AN - SCOPUS:85125507689
SN - 2689-288X
VL - 2
SP - 370
EP - 380
JO - Neurotrauma Reports
JF - Neurotrauma Reports
IS - 1
ER -