TY - JOUR
T1 - Bridging the gap between military prolonged field care monitoring and exploration spaceflight
T2 - the compensatory reserve
AU - Schlotman, Taylor E.
AU - Lehnhardt, Kris R.
AU - Abercromby, Andrew F.
AU - Easter, Benjamin D.
AU - Downs, Meghan E.
AU - Akers, L. T.C.Kevin S.
AU - Convertino, Victor A.
N1 - Publisher Copyright:
© 2019, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - The concept of prolonged field care (PFC), or medical care applied beyond doctrinal planning timelines, is the top priority capability gap across the US Army. PFC is the idea that combat medics must be prepared to provide medical care to serious casualties in the field without the support of robust medical infrastructure or resources in the event of delayed medical evacuation. With limited resources, significant distances to travel before definitive care, and an inability to evacuate in a timely fashion, medical care during exploration spaceflight constitutes the ultimate example PFC. One of the main capability gaps for PFC in both military and spaceflight settings is the need for technologies for individualized monitoring of a patient’s physiological status. A monitoring capability known as the compensatory reserve measurement (CRM) meets such a requirement. CRM is a small, portable, wearable technology that uses a machine learning and feature extraction-based algorithm to assess real-time changes in hundreds of specific features of arterial waveforms. Future development and advancement of CRM still faces engineering challenges to develop ruggedized wearable sensors that can measure waveforms for determining CRM from multiple sites on the body and account for less than optimal conditions (sweat, water, dirt, blood, movement, etc.). We show here the utility of a military wearable technology, CRM, which can be translated to space exploration.
AB - The concept of prolonged field care (PFC), or medical care applied beyond doctrinal planning timelines, is the top priority capability gap across the US Army. PFC is the idea that combat medics must be prepared to provide medical care to serious casualties in the field without the support of robust medical infrastructure or resources in the event of delayed medical evacuation. With limited resources, significant distances to travel before definitive care, and an inability to evacuate in a timely fashion, medical care during exploration spaceflight constitutes the ultimate example PFC. One of the main capability gaps for PFC in both military and spaceflight settings is the need for technologies for individualized monitoring of a patient’s physiological status. A monitoring capability known as the compensatory reserve measurement (CRM) meets such a requirement. CRM is a small, portable, wearable technology that uses a machine learning and feature extraction-based algorithm to assess real-time changes in hundreds of specific features of arterial waveforms. Future development and advancement of CRM still faces engineering challenges to develop ruggedized wearable sensors that can measure waveforms for determining CRM from multiple sites on the body and account for less than optimal conditions (sweat, water, dirt, blood, movement, etc.). We show here the utility of a military wearable technology, CRM, which can be translated to space exploration.
UR - http://www.scopus.com/inward/record.url?scp=85075999598&partnerID=8YFLogxK
U2 - 10.1038/s41526-019-0089-9
DO - 10.1038/s41526-019-0089-9
M3 - Review article
AN - SCOPUS:85075999598
SN - 2373-8065
VL - 5
JO - npj Microgravity
JF - npj Microgravity
IS - 1
M1 - 29
ER -