TY - JOUR
T1 - C-terminal domain small phosphatase 1 (CTDSP1) regulates growth factor expression and axonal regeneration in peripheral nerve tissue
AU - Gervasi, Noreen M.
AU - Dimtchev, Alexander
AU - Clark, Desraj M.
AU - Dingle, Marvin
AU - Pisarchik, Alexander V.
AU - Nesti, Leon J.
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Peripheral Nerve Injury (PNI) represents a major clinical and economic burden. Despite the ability of peripheral neurons to regenerate their axons after an injury, patients are often left with motor and/or sensory disability and may develop chronic pain. Successful regeneration and target organ reinnervation require comprehensive transcriptional changes in both injured neurons and support cells located at the site of injury. The expression of most of the genes required for axon growth and guidance and for synapsis formation is repressed by a single master transcriptional regulator, the Repressor Element 1 Silencing Transcription factor (REST). Sustained increase of REST levels after injury inhibits axon regeneration and leads to chronic pain. As targeting of transcription factors is challenging, we tested whether modulation of REST activity could be achieved through knockdown of carboxy-terminal domain small phosphatase 1 (CTDSP1), the enzyme that stabilizes REST by preventing its targeting to the proteasome. To test whether knockdown of CTDSP1 promotes neurotrophic factor expression in both support cells located at the site of injury and in peripheral neurons, we transfected mesenchymal progenitor cells (MPCs), a type of support cells that are present at high concentrations at the site of injury, and dorsal root ganglion (DRG) neurons with REST or CTDSP1 specific siRNA. We quantified neurotrophic factor expression by RT-qPCR and Western blot, and brain-derived neurotrophic factor (BDNF) release in the cell culture medium by ELISA, and we measured neurite outgrowth of DRG neurons in culture. Our results show that CTDSP1 knockdown promotes neurotrophic factor expression in both DRG neurons and the support cells MPCs, and promotes DRG neuron regeneration. Therapeutics targeting CTDSP1 activity may, therefore, represent a novel epigenetic strategy to promote peripheral nerve regeneration after PNI by promoting the regenerative program repressed by injury-induced increased levels of REST in both neurons and support cells.
AB - Peripheral Nerve Injury (PNI) represents a major clinical and economic burden. Despite the ability of peripheral neurons to regenerate their axons after an injury, patients are often left with motor and/or sensory disability and may develop chronic pain. Successful regeneration and target organ reinnervation require comprehensive transcriptional changes in both injured neurons and support cells located at the site of injury. The expression of most of the genes required for axon growth and guidance and for synapsis formation is repressed by a single master transcriptional regulator, the Repressor Element 1 Silencing Transcription factor (REST). Sustained increase of REST levels after injury inhibits axon regeneration and leads to chronic pain. As targeting of transcription factors is challenging, we tested whether modulation of REST activity could be achieved through knockdown of carboxy-terminal domain small phosphatase 1 (CTDSP1), the enzyme that stabilizes REST by preventing its targeting to the proteasome. To test whether knockdown of CTDSP1 promotes neurotrophic factor expression in both support cells located at the site of injury and in peripheral neurons, we transfected mesenchymal progenitor cells (MPCs), a type of support cells that are present at high concentrations at the site of injury, and dorsal root ganglion (DRG) neurons with REST or CTDSP1 specific siRNA. We quantified neurotrophic factor expression by RT-qPCR and Western blot, and brain-derived neurotrophic factor (BDNF) release in the cell culture medium by ELISA, and we measured neurite outgrowth of DRG neurons in culture. Our results show that CTDSP1 knockdown promotes neurotrophic factor expression in both DRG neurons and the support cells MPCs, and promotes DRG neuron regeneration. Therapeutics targeting CTDSP1 activity may, therefore, represent a novel epigenetic strategy to promote peripheral nerve regeneration after PNI by promoting the regenerative program repressed by injury-induced increased levels of REST in both neurons and support cells.
UR - http://www.scopus.com/inward/record.url?scp=85109975728&partnerID=8YFLogxK
U2 - 10.1038/s41598-021-92822-8
DO - 10.1038/s41598-021-92822-8
M3 - Article
C2 - 34262056
AN - SCOPUS:85109975728
SN - 2045-2322
VL - 11
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 14462
ER -