Abstract
The pathways for differentiation of human CD4+ T cells into functionally distinct subsets of memory cells in vivo are unknown. The identification of these subsets and pathways has clear implications for the design of vaccines and immune-targeted therapies. Here, we show that populations of apparently naïve CD4+ T cells express the chemokine receptors CXCR3 or CCR4 and demonstrate patterns of gene expression and functional responses characteristic of memory cells. The proliferation history and T cell receptor repertoire of these chemokine-receptor+ cells suggest that they are very early memory CD4+ T cells that have "rested down" before acquiring the phenotypes described for "central" or "effector" memory T cells. In addition, the chemokine-receptor+ "naïve" populations contain Th1 and Th2 cells, respectively, demonstrating that Th1/Th2 differentiation can occur very early in vivo in the absence of markers conventionally associated with memory cells. We localized ligands for CXCR3 and CCR4 to separate foci in T cell zones of tonsil, suggesting that the chemokine-receptor+ subsets may be recruited and contribute to segregated, polarized microenvironments within lymphoid organs. Importantly, our data suggest that CD4+ T cells do not differentiate according to a simple schema from naïve → CD45RO+ noneffector/central memory → effector/effector memory cells. Rather, developmental pathways branch early on to yield effector/memory populations that are highly heterogeneous and multifunctional and have the potential to become stable resting cells.
Original language | English |
---|---|
Pages (from-to) | 7916-7921 |
Number of pages | 6 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 102 |
Issue number | 22 |
DOIs | |
State | Published - 31 May 2005 |
Externally published | Yes |
Keywords
- Chemokines
- Immunologic memory
- Th1/Th2 cells