TY - GEN
T1 - Classifying magnetic resonance image modalities with convolutional neural networks
AU - Remedios, Samuel
AU - Pham, Dzung L.
AU - Butman, John A.
AU - Roy, Snehashis
N1 - Publisher Copyright:
© 2018 SPIE.
PY - 2018
Y1 - 2018
N2 - Magnetic Resonance (MR) imaging allows the acquisition of images with different contrast properties depending on the acquisition protocol and the magnetic properties of tissues. Many MR brain image processing techniques, such as tissue segmentation, require multiple MR contrasts as inputs, and each contrast is treated differently. Thus it is advantageous to automate the identification of image contrasts for various purposes, such as facilitating image processing pipelines, and managing and maintaining large databases via content-based image retrieval (CBIR). Most automated CBIR techniques focus on a two-step process: Extracting features from data and classifying the image based on these features. We present a novel 3D deep convolutional neural network (CNN)-based method for MR image contrast classification. The proposed CNN automatically identifies the MR contrast of an input brain image volume. Specifically, we explored three classification problems: (1) identify T1-weighted (T1-w), T2-weighted (T2-w), and fluid-attenuated inversion recovery (FLAIR) contrasts, (2) identify pre vs postcontrast T1, (3) identify pre vs post-contrast FLAIR. A total of 3418 image volumes acquired from multiple sites and multiple scanners were used. To evaluate each task, the proposed model was trained on 2137 images and tested on the remaining 1281 images. Results showed that image volumes were correctly classified with 97.57% accuracy.
AB - Magnetic Resonance (MR) imaging allows the acquisition of images with different contrast properties depending on the acquisition protocol and the magnetic properties of tissues. Many MR brain image processing techniques, such as tissue segmentation, require multiple MR contrasts as inputs, and each contrast is treated differently. Thus it is advantageous to automate the identification of image contrasts for various purposes, such as facilitating image processing pipelines, and managing and maintaining large databases via content-based image retrieval (CBIR). Most automated CBIR techniques focus on a two-step process: Extracting features from data and classifying the image based on these features. We present a novel 3D deep convolutional neural network (CNN)-based method for MR image contrast classification. The proposed CNN automatically identifies the MR contrast of an input brain image volume. Specifically, we explored three classification problems: (1) identify T1-weighted (T1-w), T2-weighted (T2-w), and fluid-attenuated inversion recovery (FLAIR) contrasts, (2) identify pre vs postcontrast T1, (3) identify pre vs post-contrast FLAIR. A total of 3418 image volumes acquired from multiple sites and multiple scanners were used. To evaluate each task, the proposed model was trained on 2137 images and tested on the remaining 1281 images. Results showed that image volumes were correctly classified with 97.57% accuracy.
KW - content-based image retrieval
KW - convolutional neural network
KW - deep learning
KW - Magnetic resonance imaging
KW - MRI
KW - TBI
UR - http://www.scopus.com/inward/record.url?scp=85046276064&partnerID=8YFLogxK
U2 - 10.1117/12.2293943
DO - 10.1117/12.2293943
M3 - Conference contribution
AN - SCOPUS:85046276064
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2018
A2 - Mori, Kensaku
A2 - Petrick, Nicholas
PB - SPIE
T2 - Medical Imaging 2018: Computer-Aided Diagnosis
Y2 - 12 February 2018 through 15 February 2018
ER -