TY - JOUR
T1 - Climate factors and incidence of Middle East respiratory syndrome coronavirus
AU - Altamimi, Asmaa
AU - Ahmed, Anwar E.
N1 - Publisher Copyright:
© 2019 The Authors
PY - 2020/5
Y1 - 2020/5
N2 - Background: Our understanding of climate factors and their links to the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) outbreaks is incomplete. This study aimed to estimate the monthly incidence of MERS-CoV cases and to investigate their correlation to climate factors. Methods: The study used aggregated monthly MERS-CoV cases that reported to the Saudi Center for Disease Prevention and Control from the Riyadh Region between November 1, 2012 and December 31, 2018. Data on the meteorological situation throughout the study period was calculated based on Google reports on the Riyadh Region (24.7136 °N, 46.6753 °E). The Poisson regression was used to estimate the incidence rate ratio (IRR) and its 95% confidence intervals (CI) for each climate factor. Results: A total of 712 MERS-CoV cases were included in the analysis (mean age 54.2 ± 9.9 years), and more than half (404) (56.1%) MERS-CoV cases were diagnosed during a five-month period from April to August. The highest peak timing positioned in August 2015, followed by April 2014, June 2017, March 2015, and June 2016. High temperatures (IRR = 1.054, 95% CI: 1.043–1.065) and a high ultraviolet index (IRR = 1.401, 95% CI: 1.331–1.475) were correlated with a higher incidence of MERS-CoV cases. However, low relative humidity (IRR = 0.956, 95% CI: 0.948–0.964) and low wind speed (IRR = 0.945, 95% CI: 0.912–0.979) were correlated with a lower incidence of MERS-CoV cases. Conclusion: The novel coronavirus, MERS-CoV, is influenced by climate conditions with increasing incidence between April and August. High temperature, high ultraviolet index, low wind speed, and low relative humidity are contributors to increased MERS-CoV cases. The climate factors must be evaluated in hospitals and community settings and integrated into guidelines to serve as source of control measures to prevent and eliminate the risk of infection.
AB - Background: Our understanding of climate factors and their links to the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) outbreaks is incomplete. This study aimed to estimate the monthly incidence of MERS-CoV cases and to investigate their correlation to climate factors. Methods: The study used aggregated monthly MERS-CoV cases that reported to the Saudi Center for Disease Prevention and Control from the Riyadh Region between November 1, 2012 and December 31, 2018. Data on the meteorological situation throughout the study period was calculated based on Google reports on the Riyadh Region (24.7136 °N, 46.6753 °E). The Poisson regression was used to estimate the incidence rate ratio (IRR) and its 95% confidence intervals (CI) for each climate factor. Results: A total of 712 MERS-CoV cases were included in the analysis (mean age 54.2 ± 9.9 years), and more than half (404) (56.1%) MERS-CoV cases were diagnosed during a five-month period from April to August. The highest peak timing positioned in August 2015, followed by April 2014, June 2017, March 2015, and June 2016. High temperatures (IRR = 1.054, 95% CI: 1.043–1.065) and a high ultraviolet index (IRR = 1.401, 95% CI: 1.331–1.475) were correlated with a higher incidence of MERS-CoV cases. However, low relative humidity (IRR = 0.956, 95% CI: 0.948–0.964) and low wind speed (IRR = 0.945, 95% CI: 0.912–0.979) were correlated with a lower incidence of MERS-CoV cases. Conclusion: The novel coronavirus, MERS-CoV, is influenced by climate conditions with increasing incidence between April and August. High temperature, high ultraviolet index, low wind speed, and low relative humidity are contributors to increased MERS-CoV cases. The climate factors must be evaluated in hospitals and community settings and integrated into guidelines to serve as source of control measures to prevent and eliminate the risk of infection.
KW - MERS-CoV
KW - Meteorological factors
KW - Weather conditions
UR - http://www.scopus.com/inward/record.url?scp=85076246987&partnerID=8YFLogxK
U2 - 10.1016/j.jiph.2019.11.011
DO - 10.1016/j.jiph.2019.11.011
M3 - Article
C2 - 31813836
AN - SCOPUS:85076246987
SN - 1876-0341
VL - 13
SP - 704
EP - 708
JO - Journal of Infection and Public Health
JF - Journal of Infection and Public Health
IS - 5
ER -