TY - JOUR
T1 - Cohort study of molecular identification and typing of Mycobacterium abscessus, Mycobacterium massiliense, and Mycobacterium bolletii
AU - Zelazny, Adrian M.
AU - Root, Jeremy M.
AU - Shea, Yvonne R.
AU - Colombo, Rhonda E.
AU - Shamputa, Isdore C.
AU - Stock, Frida
AU - Conlan, Sean
AU - McNulty, Steven
AU - Brown-Elliott, Barbara A.
AU - Wallace, Richard J.
AU - Olivier, Kenneth N.
AU - Holland, Steven M.
AU - Sampaio, Elizabeth P.
PY - 2009/7
Y1 - 2009/7
N2 - Mycobacterium abscessus is the most common cause of rapidly growing mycobacterial chronic lung disease. Recently, two new M. abscessus-related species, M. massiliense and M. bolletii, have been described. Health care-associated outbreaks have recently been investigated by the use of molecular identification and typing tools; however, very little is known about the natural epidemiology and pathogenicity of M. massiliense or M. bolletii outside of outbreak situations. The differentiation of these two species from M. abscessus is difficult and relies on the sequencing of one or more housekeeping genes. We performed extensive molecular identification and typing of 42 clinical isolates of M. abscessus, M. massiliense, and M. bolletii from patients monitored at the NIH between 1999 and 2007. The corresponding clinical data were also examined. Partial sequencing of rpoB, hsp65, and secA led to the unambiguous identification of 26 M. abscessus isolates, 7 M. massiliense isolates, and 2 M. bolletii isolates. The identification results for seven other isolates were ambiguous and warranted further sequencing and an integrated phylogenetic analysis. Strain relatedness was assessed by repetitive-sequence- based PCR (rep-PCR) and pulsed-field gel electrophoresis (PFGE), which showed the characteristic clonal groups for each species. Five isolates with ambiguous species identities as M. abscessus-M. massiliense by rpoB, hsp65, and secA sequencing clustered as a distinct group by rep-PCR and PFGE together with the M. massiliense type strain. Overall, the clinical manifestations of disease caused by each species were similar. In summary, a multilocus sequencing approach (not just rpoB partial sequencing) is required for division of M. abscessus and closely related species. Molecular typing complements sequence-based identification and provides information on prevalent clones with possible relevant clinical aspects.
AB - Mycobacterium abscessus is the most common cause of rapidly growing mycobacterial chronic lung disease. Recently, two new M. abscessus-related species, M. massiliense and M. bolletii, have been described. Health care-associated outbreaks have recently been investigated by the use of molecular identification and typing tools; however, very little is known about the natural epidemiology and pathogenicity of M. massiliense or M. bolletii outside of outbreak situations. The differentiation of these two species from M. abscessus is difficult and relies on the sequencing of one or more housekeeping genes. We performed extensive molecular identification and typing of 42 clinical isolates of M. abscessus, M. massiliense, and M. bolletii from patients monitored at the NIH between 1999 and 2007. The corresponding clinical data were also examined. Partial sequencing of rpoB, hsp65, and secA led to the unambiguous identification of 26 M. abscessus isolates, 7 M. massiliense isolates, and 2 M. bolletii isolates. The identification results for seven other isolates were ambiguous and warranted further sequencing and an integrated phylogenetic analysis. Strain relatedness was assessed by repetitive-sequence- based PCR (rep-PCR) and pulsed-field gel electrophoresis (PFGE), which showed the characteristic clonal groups for each species. Five isolates with ambiguous species identities as M. abscessus-M. massiliense by rpoB, hsp65, and secA sequencing clustered as a distinct group by rep-PCR and PFGE together with the M. massiliense type strain. Overall, the clinical manifestations of disease caused by each species were similar. In summary, a multilocus sequencing approach (not just rpoB partial sequencing) is required for division of M. abscessus and closely related species. Molecular typing complements sequence-based identification and provides information on prevalent clones with possible relevant clinical aspects.
UR - http://www.scopus.com/inward/record.url?scp=67650092756&partnerID=8YFLogxK
U2 - 10.1128/JCM.01688-08
DO - 10.1128/JCM.01688-08
M3 - Article
C2 - 19420162
AN - SCOPUS:67650092756
SN - 0095-1137
VL - 47
SP - 1985
EP - 1995
JO - Journal of Clinical Microbiology
JF - Journal of Clinical Microbiology
IS - 7
ER -