Abstract
Complex clinical decisions require the decision maker to evaluate multiple factors that may interact with each other. Many clinical studies, however, report 'univariate' relations between a single factor and outcome. Such univariate statistics are often insufficient to provide useful support for complex clinical decisions even when they are pooled using meta-analysis. More useful decision support could be provided by evidence-based models that take the interaction between factors into account. In this paper, we propose a method of integrating the univariate results of a meta-analysis with a clinical dataset and expert knowledge to construct multivariate Bayesian network (BN) models. The technique reduces the size of the dataset needed to learn the parameters of a model of a given complexity. Supplementing the data with the meta-analysis results avoids the need to either simplify the model - ignoring some complexities of the problem - or to gather more data. The method is illustrated by a clinical case study into the prediction of the viability of severely injured lower extremities. The case study illustrates the advantages of integrating combined evidence into BN development: the BN developed using our method outperformed four different data-driven structure learning methods, and a well-known scoring model (MESS) in this domain.
Original language | English |
---|---|
Pages (from-to) | 373-385 |
Number of pages | 13 |
Journal | Journal of Biomedical Informatics |
Volume | 52 |
DOIs | |
State | Published - 1 Dec 2014 |
Externally published | Yes |
Keywords
- Bayesian networks
- Clinical decision support
- Evidence synthesis
- Evidence-based medicine
- Meta-analysis