TY - JOUR
T1 - Comparative genomic sequence analysis of the human and mouse cystic fibrosis transmembrane conductance regulator genes
AU - Ellsworth, Rachel E.
AU - Jamison, D. Curtis
AU - Touchman, Jeffrey W.
AU - Chissoe, Stephanie L.
AU - Braden Maduro, Valerie V.
AU - Bouffard, Gerard G.
AU - Dietrich, Nicole L.
AU - Beckstrom-Sternberg, Stephen M.
AU - Lyer, Leslie M.
AU - Weintraub, Lauren A.
AU - Cotton, Marc
AU - Courtney, Laura
AU - Edwards, Jennifer
AU - Maupin, Rachel
AU - Ozersky, Philip
AU - Rohlfing, Theresa
AU - Wohldmann, Patricia
AU - Miner, Tracie
AU - Kemp, Kimberley
AU - Kramer, Jason
AU - Korf, Ian
AU - Pepin, Kimberlie
AU - Antonacci-Fulton, Lucinda
AU - Fulton, Robert S.
AU - Minx, Patrick
AU - Hillier, La Deana W.
AU - Wilson, Richard K.
AU - Waterston, Robert H.
AU - Miller, Webb
AU - Green, Eric D.
PY - 2000/2/1
Y1 - 2000/2/1
N2 - The identification of the cystic fibrosis transmembrane conductance regulator gene (CFTR) in 1989 represents a landmark accomplishment in human genetics. Since that time, there have been numerous advances in elucidating the function of the encoded protein and the physiological basis of cystic fibrosis. However, numerous areas of cystic fibrosis biology require additional investigation, some of which would be facilitated by information about the long-range sequence context of the CFTR gene. For example, the latter might provide clues about the sequence elements responsible for the temporal and spatial regulation of CFTR expression. We thus sought to establish the sequence of the chromosomal segments encompassing the human CFTR and mouse Cftr genes, with the hope of identifying conserved regions of biologic interest by sequence comparison. Bacterial clone-based physical maps of the relevant human and mouse genomic regions were constructed, and minimally overlapping sets of clones were selected and sequenced, eventually yielding ≃1.6 Mb and ≃358 kb of contiguous human and mouse sequence, respectively. These efforts have produced the complete sequence of the ≃189- kb and ≃152-kb segments containing the human CFTR and mouse Cftr genes, respectively, as well as significant amounts of flanking DNA. Analyses of the resulting data provide insights about the organization of the CFTR/Cftr genes and potential sequence elements regulating their expression. Furthermore, the generated sequence reveals the precise architecture of genes residing near CFTR/Cftr, including one known gene (WNT2/Wnt2) and two previously unknown genes that immediately flank CFTR/Cftr.
AB - The identification of the cystic fibrosis transmembrane conductance regulator gene (CFTR) in 1989 represents a landmark accomplishment in human genetics. Since that time, there have been numerous advances in elucidating the function of the encoded protein and the physiological basis of cystic fibrosis. However, numerous areas of cystic fibrosis biology require additional investigation, some of which would be facilitated by information about the long-range sequence context of the CFTR gene. For example, the latter might provide clues about the sequence elements responsible for the temporal and spatial regulation of CFTR expression. We thus sought to establish the sequence of the chromosomal segments encompassing the human CFTR and mouse Cftr genes, with the hope of identifying conserved regions of biologic interest by sequence comparison. Bacterial clone-based physical maps of the relevant human and mouse genomic regions were constructed, and minimally overlapping sets of clones were selected and sequenced, eventually yielding ≃1.6 Mb and ≃358 kb of contiguous human and mouse sequence, respectively. These efforts have produced the complete sequence of the ≃189- kb and ≃152-kb segments containing the human CFTR and mouse Cftr genes, respectively, as well as significant amounts of flanking DNA. Analyses of the resulting data provide insights about the organization of the CFTR/Cftr genes and potential sequence elements regulating their expression. Furthermore, the generated sequence reveals the precise architecture of genes residing near CFTR/Cftr, including one known gene (WNT2/Wnt2) and two previously unknown genes that immediately flank CFTR/Cftr.
UR - http://www.scopus.com/inward/record.url?scp=12944268995&partnerID=8YFLogxK
U2 - 10.1073/pnas.97.3.1172
DO - 10.1073/pnas.97.3.1172
M3 - Article
C2 - 10655503
AN - SCOPUS:12944268995
SN - 0027-8424
VL - 97
SP - 1172
EP - 1177
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 3
ER -