TY - JOUR
T1 - Comparing spinal loads in individuals with unilateral transtibial amputation with and without chronic low back pain
T2 - An EMG-informed approach
AU - Butowicz, Courtney M.
AU - Golyski, Pawel R.
AU - Acasio, Julian C.
AU - Hendershot, Brad D.
N1 - Publisher Copyright:
© 2024
PY - 2024/3
Y1 - 2024/3
N2 - Chronic low back pain (cLBP) is highly prevalent after lower limb amputation (LLA), likely due in part to biomechanical factors. Here, three-dimensional full-body kinematics and kinetics during level-ground walking, at a self-selected and three controlled speeds (1.0, 1.3, and 1.6 m/s), were collected from twenty-one persons with unilateral transtibial LLA, with (n = 9) and without cLBP (n = 12). Peak compressive, mediolateral, and anteroposterior L5-S1 spinal loads were estimated from a full-body, transtibial amputation-specific OpenSim model and compared between groups. Predicted lumbar joint torques from muscle activations were compared to inverse dynamics and predicted and measured electromyographic muscle activations were compared for model evaluation and verification. There were no group differences in compressive or anterior shear forces (p > 0.466). During intact stance, peak ipsilateral loads increased with speed to a greater extent in the cLBP group vs. no cLBP group (p=0.023), while during prosthetic stance, peak contralateral loads were larger in the no cLBP group (p=0.047) and increased to a greater extent with walking speed compared to the cLBP group (p=0.008). During intact stance, intact side external obliques had higher activations in the no cLBP group (p=0.039), and internal obliques had higher activations in the cLBP group at faster walking speeds compared to the no cLBP group. Predicted muscle activations demonstrated similar activation patterns to electromyographic-measured activations (r = 0.56–0.96), and error between inverse dynamics and simulated spinal moments was low (0.08 Nm RMS error). Persons with transtibial LLA and cLBP may adopt movement strategies during walking to reduce mediolateral shear forces at the L5-S1 joint, particularly as walking speed increases. However, future work is needed to understand the time course from pain onset to chronification and the cumulative influence of increased spinal loads over time.
AB - Chronic low back pain (cLBP) is highly prevalent after lower limb amputation (LLA), likely due in part to biomechanical factors. Here, three-dimensional full-body kinematics and kinetics during level-ground walking, at a self-selected and three controlled speeds (1.0, 1.3, and 1.6 m/s), were collected from twenty-one persons with unilateral transtibial LLA, with (n = 9) and without cLBP (n = 12). Peak compressive, mediolateral, and anteroposterior L5-S1 spinal loads were estimated from a full-body, transtibial amputation-specific OpenSim model and compared between groups. Predicted lumbar joint torques from muscle activations were compared to inverse dynamics and predicted and measured electromyographic muscle activations were compared for model evaluation and verification. There were no group differences in compressive or anterior shear forces (p > 0.466). During intact stance, peak ipsilateral loads increased with speed to a greater extent in the cLBP group vs. no cLBP group (p=0.023), while during prosthetic stance, peak contralateral loads were larger in the no cLBP group (p=0.047) and increased to a greater extent with walking speed compared to the cLBP group (p=0.008). During intact stance, intact side external obliques had higher activations in the no cLBP group (p=0.039), and internal obliques had higher activations in the cLBP group at faster walking speeds compared to the no cLBP group. Predicted muscle activations demonstrated similar activation patterns to electromyographic-measured activations (r = 0.56–0.96), and error between inverse dynamics and simulated spinal moments was low (0.08 Nm RMS error). Persons with transtibial LLA and cLBP may adopt movement strategies during walking to reduce mediolateral shear forces at the L5-S1 joint, particularly as walking speed increases. However, future work is needed to understand the time course from pain onset to chronification and the cumulative influence of increased spinal loads over time.
KW - Amputation
KW - Gait
KW - Limb loss
KW - Low back pain
KW - Musculoskeletal model
KW - Spinal loads
UR - http://www.scopus.com/inward/record.url?scp=85185585861&partnerID=8YFLogxK
U2 - 10.1016/j.jbiomech.2024.111966
DO - 10.1016/j.jbiomech.2024.111966
M3 - Article
C2 - 38373872
AN - SCOPUS:85185585861
SN - 0021-9290
VL - 166
JO - Journal of Biomechanics
JF - Journal of Biomechanics
M1 - 111966
ER -