Compressive sensing in distributed radar sensor networks using pulse compression waveforms

Lei Xu*, Qilian Liang, Xiuzhen Cheng, Dechang Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Inspired by recent advances in compressive sensing (CS), we introduce CS to the radar sensor network (RSN) using pulse compression technique. Our idea is to employ a set of stepped-frequency (SF) waveforms as pulse compression codes for transmit sensors, and to use the same SF waveforms as the sparse matrix to compress the signal in the receiving sensor. We obtain that the signal samples along the time domain could be largely compressed so that they could be recovered by a small number of measurements. A diversity gain could also be obtained at the output of the matched filters. In addition, we also develop a maximum likelihood (ML) algorithm for radar cross section (RCS) parameter estimation and provide the Cramer-Rao lower bound (CRLB) to validate the theoretical result. Simulation results show that the signal could be perfectly reconstructed if the number of measurements is equal to or larger than the number of transmit sensors. Even if the signal could not be completely recovered, the probability of miss detection of target could be kept zero. It is also illustrated that the actual variance of the RCS parameter estimation θ̂ satisfies the CRLB and our ML estimator is an accurate estimator on the target RCS parameter.

Original languageEnglish
Article number36
JournalEurasip Journal on Wireless Communications and Networking
Volume2013
Issue number1
DOIs
StatePublished - 2013
Externally publishedYes

Keywords

  • Compressive sensing
  • Pulse compression
  • Radar sensor networks
  • Stepped-frequency waveform
  • Target RCS

Fingerprint

Dive into the research topics of 'Compressive sensing in distributed radar sensor networks using pulse compression waveforms'. Together they form a unique fingerprint.

Cite this