TY - JOUR
T1 - Determination of methemoglobin and hemoglobin levels in small volume samples
AU - Arnaud, Francoise
AU - Higgins, Adam
AU - McCarron, Richard
AU - Moon-Massat, Paula F.
N1 - Publisher Copyright:
© 2016, This material is published by permission of the NeuroTrauma Department operated by the Naval Medical Research Center for the US Department of the Navy under work unit 603115HP.3730.001.A1247.
PY - 2017/1/2
Y1 - 2017/1/2
N2 - Background/aims Hemoglobin-based oxygen carriers (HBOCs) have been previously studied as resuscitation fluids. Due to HBOCs specific molecular conformation, hemoglobin (Hb) and methemoglobin (MetHb) determination is not always possible with automated apparatus. A practical technique was designed that allows simultaneous reading of MetHb and Hb in small volume samples. Methods A spectrophotometric method for measuring low levels of MetHb and Hb from limited volume samples was developed using a 96-well-plate by downsizing the Evelyn-Malloy and Drabkin methods. Either blood or buffer samples were spiked with one of five HBOCs (HBOC-201, M101, MP4CO-NP, Sanguinate and Oxyvita C). After treatment with cyanides, the samples were read at 540, 630, and 680 nm, and Hb and MetHb results were compared to certificate-of-analysis. Results Hb levels ranging from 0.2 to 2.8 g/dl were detected accurately with the 96-well-plate method with HBOC-201. Similarly, this method accurately measured Hb from either plasma or buffer samples containing any of the HBOCs. The MetHb plasma samples with HBOC-201 were also in agreement with ABL results (R = 0.99719). MetHb from all HBOCs in buffer measured with this method was comparable to reference but the accuracy was compromised for HBOCs in blood. Conclusions A useful 96-well-plate method of measuring HBOCs’ Hb was designed for small-volume plasma samples. It was accurate for measuring MetHb from samples, that contained M101, MP4CO-NP, Sanguinate, and Oxyvita C diluted in buffer. This well-plate method allows reading of batch samples, multiple replicates, and using small volumes to accommodate limited animal blood collection which would not be otherwise detected by automated instrumentation.
AB - Background/aims Hemoglobin-based oxygen carriers (HBOCs) have been previously studied as resuscitation fluids. Due to HBOCs specific molecular conformation, hemoglobin (Hb) and methemoglobin (MetHb) determination is not always possible with automated apparatus. A practical technique was designed that allows simultaneous reading of MetHb and Hb in small volume samples. Methods A spectrophotometric method for measuring low levels of MetHb and Hb from limited volume samples was developed using a 96-well-plate by downsizing the Evelyn-Malloy and Drabkin methods. Either blood or buffer samples were spiked with one of five HBOCs (HBOC-201, M101, MP4CO-NP, Sanguinate and Oxyvita C). After treatment with cyanides, the samples were read at 540, 630, and 680 nm, and Hb and MetHb results were compared to certificate-of-analysis. Results Hb levels ranging from 0.2 to 2.8 g/dl were detected accurately with the 96-well-plate method with HBOC-201. Similarly, this method accurately measured Hb from either plasma or buffer samples containing any of the HBOCs. The MetHb plasma samples with HBOC-201 were also in agreement with ABL results (R = 0.99719). MetHb from all HBOCs in buffer measured with this method was comparable to reference but the accuracy was compromised for HBOCs in blood. Conclusions A useful 96-well-plate method of measuring HBOCs’ Hb was designed for small-volume plasma samples. It was accurate for measuring MetHb from samples, that contained M101, MP4CO-NP, Sanguinate, and Oxyvita C diluted in buffer. This well-plate method allows reading of batch samples, multiple replicates, and using small volumes to accommodate limited animal blood collection which would not be otherwise detected by automated instrumentation.
KW - 96-well-plate
KW - Drabkin
KW - Evelyn-Malloy
KW - HBOC
KW - cyanide
UR - http://www.scopus.com/inward/record.url?scp=84961217089&partnerID=8YFLogxK
U2 - 10.3109/21691401.2016.1138490
DO - 10.3109/21691401.2016.1138490
M3 - Article
C2 - 26934005
AN - SCOPUS:84961217089
SN - 2169-1401
VL - 45
SP - 58
EP - 62
JO - Artificial Cells, Nanomedicine and Biotechnology
JF - Artificial Cells, Nanomedicine and Biotechnology
IS - 1
ER -