Disruption of the tagF Orthologue in the epa Locus Variable Region of Enterococcus faecalis Causes Cell Surface Changes and Suppresses an eep-Dependent Lysozyme Resistance Phenotype

Candace N. Rouchon, Arielle J. Weinstein, Carissa A. Hutchison, Zahra B. Zubair-Nizami, Petra L. Kohler, Kristi L. Frank*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The disease-producing capacity of the opportunistic pathogen Enterococcus faecalis is enhanced by the ability of the bacterium to evade killing by antimicrobial agents. Survival of E. faecalis in the presence of the human antimicrobial enzyme lysozyme is mediated in part by the site 2 metalloprotease Eep; however, a complete model of enterococcal lysozyme resistance has not been elucidated. To better understand the molecular basis for lysozyme resistance in E. faecalis, we analyzed Deep suppressor mutants that acquire resistance to lysozyme through mutation of the gene OG1RF_11713, a predicted teichoic acid biosynthesis-encoding gene located within the variable region of the enterococcal polysaccharide antigen (epa) locus. Sequence comparisons revealed that OG1RF_11713 is most similar to the cytidine-59-diphosphate (CDP)-glycerol:poly-(glycerolphosphate)glycerophosphotransferase TagF from Staphylococcus epidermidis. Inactivation of OG1RF_11713 in both the wild-type and Deep genetic backgrounds was sufficient to increase the resistance of E. faecalis OG1RF to lysozyme. Minimal amounts of N-acetylgalactosamine were detectable in cell wall carbohydrate extracts of OG1RF_11713 deletion mutants, and this was associated with a reduction in negative cell surface charge. Targeted disruption of OG1RF_11713 was also associated with increased susceptibility to the antibiotic polymyxin B and membrane-targeting detergents and decreased susceptibility to the lantibiotic nisin. This work implicates OG1RF_11713 as a major determinant of cell envelope integrity and provides further validation that lysozyme resistance is intrinsically linked to the modification of enterococcal cell wall polysaccharides.

Original languageEnglish
JournalJournal of Bacteriology
Volume204
Issue number10
DOIs
StatePublished - Oct 2022
Externally publishedYes

Keywords

  • antimicrobial resistance
  • cationic antimicrobial peptide
  • cell surface
  • cell wall
  • genetics
  • lysozyme
  • teichoic acid

Cite this