TY - JOUR
T1 - Effect of Blast Injury on Auditory Localization in Military Service Members
AU - Kubli, Lina R.
AU - Brungart, Douglas
AU - Northern, Jerry
N1 - Publisher Copyright:
© 2017 Wolters Kluwer Health, Inc. All rights reserved
PY - 2018/5/1
Y1 - 2018/5/1
N2 - Objectives: Among the many advantages of binaural hearing are the abilities to localize sounds in space and to attend to one sound in the presence of many sounds. Binaural hearing provides benefits for all listeners, but it may be especially critical for military personnel who must maintain situational awareness in complex tactical environments with multiple speech and noise sources. There is concern that Military Service Members who have been exposed to one or more high-intensity blasts during their tour of duty may have difficulty with binaural and spatial ability due to degradation in auditory and cognitive processes. The primary objective of this study was to assess the ability of blast-exposed Military Service Members to localize speech sounds in quiet and in multisource environments with one or two competing talkers. Design: Participants were presented with one, two, or three topic-related (e.g., sports, food, travel) sentences under headphones and required to attend to, and then locate the source of, the sentence pertaining to a prespecified target topic within a virtual space. The listener’s head position was monitored by a head-mounted tracking device that continuously updated the apparent spatial location of the target and competing speech sounds as the subject turned within the virtual space. Measurements of auditory localization ability included mean absolute error in locating the source of the target sentence, the time it took to locate the target sentence within 30degrees, target/competitor confusion errors, response time, and cumulative head motion. Twenty-one blast-exposed Active-Duty or Veteran Military Service Members (blast-exposed group) and 33 non-blast-exposed Service Members and beneficiaries (control group) were evaluated. Results: In general, the blast-exposed group performed as well as the control group if the task involved localizing the source of a single speech target. However, if the task involved two or three simultaneous talkers, localization ability was compromised for some participants in the blast-exposed group. Blast-exposed participants were less accurate in their localization responses and required more exploratory head movements to find the location of the target talker. Conclusions: Results suggest that blast-exposed participants have more difficulty than non-blast-exposed participants in localizing sounds in complex acoustic environments. This apparent deficit in spatial hearing ability highlights the need to develop new diagnostic tests using complex listening tasks that involve multiple sound sources that require speech segregation and comprehension.
AB - Objectives: Among the many advantages of binaural hearing are the abilities to localize sounds in space and to attend to one sound in the presence of many sounds. Binaural hearing provides benefits for all listeners, but it may be especially critical for military personnel who must maintain situational awareness in complex tactical environments with multiple speech and noise sources. There is concern that Military Service Members who have been exposed to one or more high-intensity blasts during their tour of duty may have difficulty with binaural and spatial ability due to degradation in auditory and cognitive processes. The primary objective of this study was to assess the ability of blast-exposed Military Service Members to localize speech sounds in quiet and in multisource environments with one or two competing talkers. Design: Participants were presented with one, two, or three topic-related (e.g., sports, food, travel) sentences under headphones and required to attend to, and then locate the source of, the sentence pertaining to a prespecified target topic within a virtual space. The listener’s head position was monitored by a head-mounted tracking device that continuously updated the apparent spatial location of the target and competing speech sounds as the subject turned within the virtual space. Measurements of auditory localization ability included mean absolute error in locating the source of the target sentence, the time it took to locate the target sentence within 30degrees, target/competitor confusion errors, response time, and cumulative head motion. Twenty-one blast-exposed Active-Duty or Veteran Military Service Members (blast-exposed group) and 33 non-blast-exposed Service Members and beneficiaries (control group) were evaluated. Results: In general, the blast-exposed group performed as well as the control group if the task involved localizing the source of a single speech target. However, if the task involved two or three simultaneous talkers, localization ability was compromised for some participants in the blast-exposed group. Blast-exposed participants were less accurate in their localization responses and required more exploratory head movements to find the location of the target talker. Conclusions: Results suggest that blast-exposed participants have more difficulty than non-blast-exposed participants in localizing sounds in complex acoustic environments. This apparent deficit in spatial hearing ability highlights the need to develop new diagnostic tests using complex listening tasks that involve multiple sound sources that require speech segregation and comprehension.
KW - Auditory localization
KW - Blast exposure
KW - Traumatic brain injury
UR - http://www.scopus.com/inward/record.url?scp=85055613316&partnerID=8YFLogxK
U2 - 10.1097/AUD.0000000000000517
DO - 10.1097/AUD.0000000000000517
M3 - Article
C2 - 29287039
AN - SCOPUS:85055613316
SN - 0196-0202
VL - 39
SP - 457
EP - 469
JO - Ear and Hearing
JF - Ear and Hearing
IS - 3
ER -