TY - JOUR
T1 - Effect of cold storage on shear-induced platelet aggregation and clot strength
AU - Nair, Prajeeda M.
AU - Pidcoke, Heather F.
AU - Cap, Andrew P.
AU - Ramasubramanian, Anand K.
PY - 2014
Y1 - 2014
N2 - BACKGROUND: Platelets (PLTs) participate in hemostasis and save lives following trauma. PLTs for transfusion are maintained at room temperature (RT, 22°C), limiting viability to 5 days because of metabolic compromise and high risk of bacterial contamination. RT storage may result in weaker clots, delaying hemorrhage control, whereas cold storage (4°C) could permit longer PLT shelf life and result in a more hemostatic product. In this study, we characterized the effect of storage temperature on shear-induced PLT aggregation, clot formation, and strength. METHODS: PLTs obtained from phlebotomized blood or by apheresis were stored at RT or 4°C for 5 days, and PLT aggregation and clot strength were assessed at 37°C. We studied PLT aggregation at steady and complex patterns of shear rates (500-2,500 per second) by flow cytometry, and the kinetics of clot formation and strength were measured using turbidity and dynamic mechanical analysis, respectively. RESULTS: PLT aggregation was higher in 4°C-stored samples on Day 5 compared with fresh or RT-stored samples at all shear rates tested (fresh vs. 4°C and RT vs. 4°C, p < 0.05). PLTs stored at 4°C for 5 days formed significantly stronger clots compared with fresh or RT-stored samples as quantified by turbidity and elastic moduli measurements (fresh vs. 4°C and RT vs. 4°C, p < 0.05). CONCLUSION: Our results show that cold-stored PLTs are more responsive to aggregation stimuli and form stronger clots, presumably because of thicker fibrin strands. These data suggest that the superior functionality of cold-stored PLTs may support faster hemostasis for acutely bleeding in trauma patients compared with RT-stored PLTs.
AB - BACKGROUND: Platelets (PLTs) participate in hemostasis and save lives following trauma. PLTs for transfusion are maintained at room temperature (RT, 22°C), limiting viability to 5 days because of metabolic compromise and high risk of bacterial contamination. RT storage may result in weaker clots, delaying hemorrhage control, whereas cold storage (4°C) could permit longer PLT shelf life and result in a more hemostatic product. In this study, we characterized the effect of storage temperature on shear-induced PLT aggregation, clot formation, and strength. METHODS: PLTs obtained from phlebotomized blood or by apheresis were stored at RT or 4°C for 5 days, and PLT aggregation and clot strength were assessed at 37°C. We studied PLT aggregation at steady and complex patterns of shear rates (500-2,500 per second) by flow cytometry, and the kinetics of clot formation and strength were measured using turbidity and dynamic mechanical analysis, respectively. RESULTS: PLT aggregation was higher in 4°C-stored samples on Day 5 compared with fresh or RT-stored samples at all shear rates tested (fresh vs. 4°C and RT vs. 4°C, p < 0.05). PLTs stored at 4°C for 5 days formed significantly stronger clots compared with fresh or RT-stored samples as quantified by turbidity and elastic moduli measurements (fresh vs. 4°C and RT vs. 4°C, p < 0.05). CONCLUSION: Our results show that cold-stored PLTs are more responsive to aggregation stimuli and form stronger clots, presumably because of thicker fibrin strands. These data suggest that the superior functionality of cold-stored PLTs may support faster hemostasis for acutely bleeding in trauma patients compared with RT-stored PLTs.
KW - Platelet storage
KW - SIPA
KW - clot strength
KW - hemorrhage
KW - refrigeration
UR - http://www.scopus.com/inward/record.url?scp=84907308515&partnerID=8YFLogxK
U2 - 10.1097/TA.0000000000000327
DO - 10.1097/TA.0000000000000327
M3 - Article
C2 - 25159368
AN - SCOPUS:84907308515
SN - 2163-0755
VL - 77
SP - S88-S93
JO - Journal of Trauma and Acute Care Surgery
JF - Journal of Trauma and Acute Care Surgery
IS - 3 SUPPL. 2
ER -