Abstract
During chronic HIV infection, immune cells become increasingly dysfunctional and exhausted. Little is known about how immune functions are restored after initiation of antiretroviral therapy (ART). In this study, we assessed cellular and metabolic activity and evaluated the effect of individual antiretrovirals on cellular subsets ex vivo in ART-treated and treatment-naive chronically HIV-infected individuals. We observed that cellular respiration was significantly decreased in most immune cells in chronic HIV infection. The respiration was correlated to immune activation and the inhibitory receptor programmed cell death 1 on CD8+ T cells. ART restored the metabolic phenotype, but the respiratory impairment persisted in CD4+ T cells. This was particularly the case for individuals receiving integrase strand transfer inhibitors. CD4+ T cells from these individuals showed a significant reduction in ex vivo proliferative capacity compared with individuals treated with protease inhibitors or nonnucleoside reverse transcriptase inhibitors. We noticed a significant decrease in respiration of cells treated with dolutegravir (DLG) or elvitegravir (EVG) and a switch from polyfunctional to TNF-α-dominated "stress" immune response. There was no effect on glycolysis, consistent with impaired mitochondrial function. We detected increased levels of mitochondrial ROS and mitochondrial mass. These findings indicate that EVG and DLG use is associated with slow proliferation and impaired respiration with underlying mitochondrial dysfunction, resulting in overall decreased cellular function in CD4+ T cells.
Original language | English |
---|---|
Article number | e126675 |
Journal | JCI Insight |
Volume | 4 |
Issue number | 12 |
DOIs | |
State | Published - 2019 |