TY - JOUR
T1 - Effects of better-ear glimpsing, binaural unmasking, and spectral resolution on spatial release from masking in cochlear-implant users
AU - Gibbs, Bobby E.
AU - Bernstein, Joshua G.W.
AU - Brungart, Douglas S.
AU - Goupell, Matthew J.
N1 - Publisher Copyright:
© 2022 Acoustical Society of America.
PY - 2022/8/1
Y1 - 2022/8/1
N2 - Bilateral cochlear-implant (BICI) listeners obtain less spatial release from masking (SRM; speech-recognition improvement for spatially separated vs co-located conditions) than normal-hearing (NH) listeners, especially for symmetrically placed maskers that produce similar long-term target-to-masker ratios at the two ears. Two experiments examined possible causes of this deficit, including limited better-ear glimpsing (using speech information from the more advantageous ear in each time-frequency unit), limited binaural unmasking (using interaural differences to improve signal-in-noise detection), or limited spectral resolution. Listeners had NH (presented with unprocessed or vocoded stimuli) or BICIs. Experiment 1 compared natural symmetric maskers, idealized monaural better-ear masker (IMBM) stimuli that automatically performed better-ear glimpsing, and hybrid stimuli that added worse-ear information, potentially restoring binaural cues. BICI and NH-vocoded SRM was comparable to NH-unprocessed SRM for idealized stimuli but was 14%-22% lower for symmetric stimuli, suggesting limited better-ear glimpsing ability. Hybrid stimuli improved SRM for NH-unprocessed listeners but degraded SRM for BICI and NH-vocoded listeners, suggesting they experienced across-ear interference instead of binaural unmasking. In experiment 2, increasing the number of vocoder channels did not change NH-vocoded SRM. BICI SRM deficits likely reflect a combination of across-ear interference, limited better-ear glimpsing, and poorer binaural unmasking that stems from cochlear-implant-processing limitations other than reduced spectral resolution.
AB - Bilateral cochlear-implant (BICI) listeners obtain less spatial release from masking (SRM; speech-recognition improvement for spatially separated vs co-located conditions) than normal-hearing (NH) listeners, especially for symmetrically placed maskers that produce similar long-term target-to-masker ratios at the two ears. Two experiments examined possible causes of this deficit, including limited better-ear glimpsing (using speech information from the more advantageous ear in each time-frequency unit), limited binaural unmasking (using interaural differences to improve signal-in-noise detection), or limited spectral resolution. Listeners had NH (presented with unprocessed or vocoded stimuli) or BICIs. Experiment 1 compared natural symmetric maskers, idealized monaural better-ear masker (IMBM) stimuli that automatically performed better-ear glimpsing, and hybrid stimuli that added worse-ear information, potentially restoring binaural cues. BICI and NH-vocoded SRM was comparable to NH-unprocessed SRM for idealized stimuli but was 14%-22% lower for symmetric stimuli, suggesting limited better-ear glimpsing ability. Hybrid stimuli improved SRM for NH-unprocessed listeners but degraded SRM for BICI and NH-vocoded listeners, suggesting they experienced across-ear interference instead of binaural unmasking. In experiment 2, increasing the number of vocoder channels did not change NH-vocoded SRM. BICI SRM deficits likely reflect a combination of across-ear interference, limited better-ear glimpsing, and poorer binaural unmasking that stems from cochlear-implant-processing limitations other than reduced spectral resolution.
UR - http://www.scopus.com/inward/record.url?scp=85137095207&partnerID=8YFLogxK
U2 - 10.1121/10.0013746
DO - 10.1121/10.0013746
M3 - Article
C2 - 36050186
AN - SCOPUS:85137095207
SN - 0001-4966
VL - 152
SP - 1230
EP - 1246
JO - Journal of the Acoustical Society of America
JF - Journal of the Acoustical Society of America
IS - 2
ER -