TY - JOUR
T1 - Effects of bovine polymerized hemoglobin on coagulation in controlled hemorrhagic shock in swine
AU - Arnaud, Françoise
AU - Hammett, Mike
AU - Asher, Ludmila
AU - Philbin, Nora
AU - Rice, Jennifer
AU - Dong, Feng
AU - Pearce, Bruce
AU - Flournoy, William S.
AU - Nicholson, Carol
AU - McCarron, Richard
AU - Freilich, Daniel
PY - 2005/8
Y1 - 2005/8
N2 - HBOC-201, a bovine polymerized hemoglobin, has been proposed as a novel oxygen-carrying resuscitative fluid for patients with hemorrhagic shock (HS). Herein, we evaluated the hemostatic effects of HBOC-201 in an animal model of HS. A 40% blood loss-controlled hemorrhage and soft tissue injury were performed in 24 invasively monitored Yucatan mini-pigs. Pigs were resuscitated with HBOC-201 (HBOC) or hydroxyethyl starch (HEX), or were not resuscitated (NON) based on cardiac parameters during a 4-h prehospital phase. Afterward, animals received simulated hospital care for 3 days with blood or saline transfusions. Hemostasis measurements included in vivo bleeding time (BT), thromboelastography (TEG), in vitro bleeding time (platelet function; PFA-CT), prothrombin time (PT), and partial thromboplastin time (PTT). Serum lactate was measured and lung sections were evaluated for microthrombi by electron microscopy. During the prehospital phase, BT remained unchanged in the HBOC group. TEG reaction time increased in HBOC pigs during the late prehospital phase and was greater than in NON or HEX pigs at 24 h (P = 0.03). TEG maximum amplitude was similar for the two fluid-resuscitated groups. PFA-CT increased in both resuscitated groups but less with HBOC (P = 0.02) in the prehospital phase; this effect was reversed by 24 h (P = 0.02). In the hospital phase, PT decreased (P < 0.02), whereas PTT increased above baseline (P < 0.01). Lactic acidosis in HBOC and HEX groups was similar. Aspartate aminotransferase was relatively elevated in the HBOC group at 24 h. Electron microscopy showed no evidence of platelet/fibrin clots or microthrombi in any of the animals. Twenty-four-hour group differences mainly reflected the fact that all HEX animals (8/8) received blood transfusions compared with only one HBOC animal (1/8). In swine with HS, HBOC resuscitation induced less thrombopathy than HEX during the prehospital phase. Mild delayed effects on platelet and clot formation during the hospital phase are transient and likely related to fewer blood transfusions. In swine with HS, HBOC resuscitation induced less thrombopathy than HEX during the prehospital phase but more thrombopathy in the hospital phase. The delayed effects on platelet and clot formation during the hospital phase are transient and may be related to the need for fewer blood transfusions.
AB - HBOC-201, a bovine polymerized hemoglobin, has been proposed as a novel oxygen-carrying resuscitative fluid for patients with hemorrhagic shock (HS). Herein, we evaluated the hemostatic effects of HBOC-201 in an animal model of HS. A 40% blood loss-controlled hemorrhage and soft tissue injury were performed in 24 invasively monitored Yucatan mini-pigs. Pigs were resuscitated with HBOC-201 (HBOC) or hydroxyethyl starch (HEX), or were not resuscitated (NON) based on cardiac parameters during a 4-h prehospital phase. Afterward, animals received simulated hospital care for 3 days with blood or saline transfusions. Hemostasis measurements included in vivo bleeding time (BT), thromboelastography (TEG), in vitro bleeding time (platelet function; PFA-CT), prothrombin time (PT), and partial thromboplastin time (PTT). Serum lactate was measured and lung sections were evaluated for microthrombi by electron microscopy. During the prehospital phase, BT remained unchanged in the HBOC group. TEG reaction time increased in HBOC pigs during the late prehospital phase and was greater than in NON or HEX pigs at 24 h (P = 0.03). TEG maximum amplitude was similar for the two fluid-resuscitated groups. PFA-CT increased in both resuscitated groups but less with HBOC (P = 0.02) in the prehospital phase; this effect was reversed by 24 h (P = 0.02). In the hospital phase, PT decreased (P < 0.02), whereas PTT increased above baseline (P < 0.01). Lactic acidosis in HBOC and HEX groups was similar. Aspartate aminotransferase was relatively elevated in the HBOC group at 24 h. Electron microscopy showed no evidence of platelet/fibrin clots or microthrombi in any of the animals. Twenty-four-hour group differences mainly reflected the fact that all HEX animals (8/8) received blood transfusions compared with only one HBOC animal (1/8). In swine with HS, HBOC resuscitation induced less thrombopathy than HEX during the prehospital phase. Mild delayed effects on platelet and clot formation during the hospital phase are transient and likely related to fewer blood transfusions. In swine with HS, HBOC resuscitation induced less thrombopathy than HEX during the prehospital phase but more thrombopathy in the hospital phase. The delayed effects on platelet and clot formation during the hospital phase are transient and may be related to the need for fewer blood transfusions.
KW - Blood substitutes
KW - Coagulopathy
KW - Hemoglobin-based oxygen carriers
KW - Resuscitation
KW - Trauma
UR - http://www.scopus.com/inward/record.url?scp=23344448003&partnerID=8YFLogxK
U2 - 10.1097/01.shk.0000170354.18437.2f
DO - 10.1097/01.shk.0000170354.18437.2f
M3 - Article
C2 - 16044085
AN - SCOPUS:23344448003
SN - 1073-2322
VL - 24
SP - 145
EP - 152
JO - Shock
JF - Shock
IS - 2
ER -