Abstract
The expansion of polyclonal T regulatory cells (Tregs) offers great promise for the treatment of immune-mediated diseases, such as multiple sclerosis (MS). However, polyclonal Tregs can be non-specifically immunosuppressive. Based on the advancements with chimeric antigen receptor (CAR) therapy in leukemia, we previously engineered Tregs to express a T-cell receptor (TCR) specific for a myelin basic protein (MBP) peptide. These TCR-engineered specific Tregs suppressed the proliferation of MBP-reactive T effector cells and ameliorated myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). Herein, we extend this approach by creating human regulatory T cells expressing functional single-chain chimeric antigen receptors (scFv CAR), targeting either MBP or MOG. These scFv CAR-transduced Tregs retained FoxP3 and Helios, characteristic of Treg cells, after long-term expansion in vitro. Importantly, these engineered CNS targeting CAR-Tregs were able to suppress autoimmune pathology in EAE, demonstrating that these Tregs have the potential to be used as a cellular therapy for MS patients.
Original language | English |
---|---|
Article number | 104222 |
Journal | Cellular Immunology |
Volume | 358 |
DOIs | |
State | Published - Dec 2020 |
Externally published | Yes |
Keywords
- Chimeric antigen receptor (CAR)
- EAE
- Multiple sclerosis
- Regulatory T cells
- Single chain (scFv)