TY - JOUR
T1 - Enhancement of human adipose-derived stromal cell angiogenesis through knockdown of a BMP-2 inhibitor
AU - Levi, Benjamin
AU - Nelson, Emily R.
AU - Hyun, Jeong S.
AU - Glotzbach, Jason P.
AU - Li, Shuli
AU - Nauta, Allison
AU - Montoro, Daniel T.
AU - Lee, Min
AU - Commons, George C.
AU - Hu, Shijun
AU - Wu, Joseph C.
AU - Gurtner, Geoffrey C.
AU - Longaker, Michael T.
PY - 2012/1
Y1 - 2012/1
N2 - BACKGROUND: Previous studies have demonstrated the role of noggin, a bone morphogenetic protein-2 inhibitor, in vascular development and angiogenesis. The authors hypothesized that noggin suppression in human adipose-derived stromal cells would enhance vascular endothelial growth factor secretion and angiogenesis in vitro and in vivo to a greater extent than bone morphogenetic protein-2 alone. METHODS: Human adipose-derived stromal cells were isolated from human lipoaspirate (n = 6) noggin was knocked down using lentiviral techniques. Knockdown was confirmed and angiogenesis was assessed by tubule formation and quantitative real-time polymerase chain reaction. Cells were seeded onto scaffolds and implanted into a 4-mm critical size calvarial defect. In vivo angiogenic signaling was assessed by immunofluorescence and immunohistochemistry. RESULTS: Human adipose-derived stromal cells with noggin suppression secreted significantly higher amounts of angiogenic proteins, expressed higher levels of angiogenic genes, and formed more tubules in vitro. In vivo, calvarial defects seeded with noggin shRNA human adipose-derived stromal cells exhibited a significantly higher number of vessels in the defect site than controls by immunohistochemistry (p < 0.05). In addition, bone morphogenetic protein-2-releasing scaffolds significantly enhanced vascular signaling in the defect site. CONCLUSIONS: Human adipose-derived stromal cells demonstrate significant increases in angiogenesis in vitro and in vivo with both noggin suppression and BMP-2 supplementation. By creating a cell with noggin suppressed and by using a scaffold with increased bone morphogenetic protein-2 signaling, a more angiogenic niche can be created.
AB - BACKGROUND: Previous studies have demonstrated the role of noggin, a bone morphogenetic protein-2 inhibitor, in vascular development and angiogenesis. The authors hypothesized that noggin suppression in human adipose-derived stromal cells would enhance vascular endothelial growth factor secretion and angiogenesis in vitro and in vivo to a greater extent than bone morphogenetic protein-2 alone. METHODS: Human adipose-derived stromal cells were isolated from human lipoaspirate (n = 6) noggin was knocked down using lentiviral techniques. Knockdown was confirmed and angiogenesis was assessed by tubule formation and quantitative real-time polymerase chain reaction. Cells were seeded onto scaffolds and implanted into a 4-mm critical size calvarial defect. In vivo angiogenic signaling was assessed by immunofluorescence and immunohistochemistry. RESULTS: Human adipose-derived stromal cells with noggin suppression secreted significantly higher amounts of angiogenic proteins, expressed higher levels of angiogenic genes, and formed more tubules in vitro. In vivo, calvarial defects seeded with noggin shRNA human adipose-derived stromal cells exhibited a significantly higher number of vessels in the defect site than controls by immunohistochemistry (p < 0.05). In addition, bone morphogenetic protein-2-releasing scaffolds significantly enhanced vascular signaling in the defect site. CONCLUSIONS: Human adipose-derived stromal cells demonstrate significant increases in angiogenesis in vitro and in vivo with both noggin suppression and BMP-2 supplementation. By creating a cell with noggin suppressed and by using a scaffold with increased bone morphogenetic protein-2 signaling, a more angiogenic niche can be created.
UR - http://www.scopus.com/inward/record.url?scp=84655161487&partnerID=8YFLogxK
U2 - 10.1097/PRS.0b013e3182361ff5
DO - 10.1097/PRS.0b013e3182361ff5
M3 - Article
C2 - 21915082
AN - SCOPUS:84655161487
SN - 0032-1052
VL - 129
SP - 53
EP - 66
JO - Plastic and Reconstructive Surgery
JF - Plastic and Reconstructive Surgery
IS - 1
ER -