TY - JOUR
T1 - Ensemble ecological niche modeling of West Nile virus probability in Florida
AU - Beeman, Sean P.
AU - Morrison, Andrea M.
AU - Unnasch, Thomas R.
AU - Unnasch, Robert S.
N1 - Publisher Copyright:
Copyright: © 2021 Beeman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/10
Y1 - 2021/10
N2 - Ecological Niche Modeling is a process by which spatiotemporal, climatic, and environmental data are analyzed to predict the distribution of an organism. Using this process, an ensemble ecological niche model for West Nile virus habitat prediction in the state of Florida was developed. This model was created through the weighted averaging of three separate machine learning models—boosted regression tree, random forest, and maximum entropy—developed for this study using sentinel chicken surveillance and remote sensing data. Variable importance differed among the models. The highest variable permutation value included mean dewpoint temperature for the boosted regression tree model, mean temperature for the random forest model, and wetlands focal statistics for the maximum entropy mode. Model validation resulted in area under the receiver curve predictive values ranging from good [0.8728 (95% CI 0.8422–0.8986)] for the maximum entropy model to excellent [0.9996 (95% CI 0.9988–1.0000)] for random forest model, with the ensemble model predictive value also in the excellent range [0.9939 (95% CI 0.9800–0.9979]. This model should allow mosquito control districts to optimize West Nile virus surveillance, improving detection and allowing for a faster, targeted response to reduce West Nile virus transmission potential.
AB - Ecological Niche Modeling is a process by which spatiotemporal, climatic, and environmental data are analyzed to predict the distribution of an organism. Using this process, an ensemble ecological niche model for West Nile virus habitat prediction in the state of Florida was developed. This model was created through the weighted averaging of three separate machine learning models—boosted regression tree, random forest, and maximum entropy—developed for this study using sentinel chicken surveillance and remote sensing data. Variable importance differed among the models. The highest variable permutation value included mean dewpoint temperature for the boosted regression tree model, mean temperature for the random forest model, and wetlands focal statistics for the maximum entropy mode. Model validation resulted in area under the receiver curve predictive values ranging from good [0.8728 (95% CI 0.8422–0.8986)] for the maximum entropy model to excellent [0.9996 (95% CI 0.9988–1.0000)] for random forest model, with the ensemble model predictive value also in the excellent range [0.9939 (95% CI 0.9800–0.9979]. This model should allow mosquito control districts to optimize West Nile virus surveillance, improving detection and allowing for a faster, targeted response to reduce West Nile virus transmission potential.
UR - http://www.scopus.com/inward/record.url?scp=85116909800&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0256868
DO - 10.1371/journal.pone.0256868
M3 - Article
C2 - 34624026
AN - SCOPUS:85116909800
SN - 1932-6203
VL - 16
JO - PLoS ONE
JF - PLoS ONE
IS - 10 October
M1 - e0256868
ER -