TY - JOUR
T1 - Evaluations of dual attractant toxic sugar baits for surveillance and control of Aedes aegypti and Aedes albopictus in Florida
AU - Scott-Fiorenzano, Jodi M.
AU - Fulcher, Alice P.
AU - Seeger, Kelly E.
AU - Allan, Sandra A.
AU - Kline, Daniel L.
AU - Koehler, Philip G.
AU - Müller, Günter C.
AU - Xue, Rui De
N1 - Publisher Copyright:
© 2017 The Author(s).
PY - 2017/1/5
Y1 - 2017/1/5
N2 - Background: Dual attractant toxic sugar baits (D-ATSB) containing two host kairomones, L-lactic (LA) and 1-octen-3-ol (O), and fruit-based attractants were evaluated through olfactory, consumption and mortality, and semi-field experiments to determine if host kairomones could first, enhance attraction of a fruit-based (attractant) toxic sugar bait (ATSB), and second, increase the efficacy of a fruit based attractive toxic sugar bait (ATSB). Methods: Four combinations of LA and O were incorporated into the ATSB and evaluated in an olfactometer to determine if these combinations could enhance attraction of Aedes aegypti (L.) to the bait. Ae. albopictus (Skuse) and Ae. aegypti were used to determine bait consumption through excrement droplet counts and percent mortality, of the most attractive D-ATSB (1% LA and 1% O) from the olfactory study. Semi-field evaluations were conducted in screened portable field cages to determine if the D-ATSB applied to non-flowering plants controlled more mosquitoes than the fruit-based ATSB, and ASB. Mosquitoes were exposed to D-ATSB and the two controls for 48 h and collected with BGS traps. The catch rates of the BGS traps were compared to determine efficacy of the D-ATSB. Results: During olfactometer evaluations of D-ATSB, Ae. aegypti mosquitoes were more attracted to 1% LA and 1% O compared to the fruit-based toxic sugar bait alone. Both species of mosquito consumed more fruit-based non-toxic bait (ASB) and ATSB than the D-ATSB. For both species, percent mortality bioassays indicated D-ATSB controlled mosquitoes, as compared to non-toxic control, but not more than the fruit based ATSB. Semi-field evaluations, BioGents sentinel traps at 48 h confirmed that ATSB (positive control) controlled Ae. albopictus, but there was no statistical difference between ASB (negative control) and the D-ATSB. No differences were observed between the mosquitoes caught in any of the experimental formulations for Ae. aegypti. Conclusions: L-lactic (1%) and 1-octen-3-ol (1%) added to a fruit-based sugar bait increased attraction of Ae. aegypti and may have future implications in mosquito trapping devices. The addition of the host kairomones did not enhance the consumption and efficacy of the ATSB in laboratory or semi-field evaluations for both mosquito species. We attribute to the absence of other host cues leading to lack of alighting onto bait surfaces to imbibe the toxic bait, as well as a possible decrease in palatability of the bait caused by the addition of the host kairomones.
AB - Background: Dual attractant toxic sugar baits (D-ATSB) containing two host kairomones, L-lactic (LA) and 1-octen-3-ol (O), and fruit-based attractants were evaluated through olfactory, consumption and mortality, and semi-field experiments to determine if host kairomones could first, enhance attraction of a fruit-based (attractant) toxic sugar bait (ATSB), and second, increase the efficacy of a fruit based attractive toxic sugar bait (ATSB). Methods: Four combinations of LA and O were incorporated into the ATSB and evaluated in an olfactometer to determine if these combinations could enhance attraction of Aedes aegypti (L.) to the bait. Ae. albopictus (Skuse) and Ae. aegypti were used to determine bait consumption through excrement droplet counts and percent mortality, of the most attractive D-ATSB (1% LA and 1% O) from the olfactory study. Semi-field evaluations were conducted in screened portable field cages to determine if the D-ATSB applied to non-flowering plants controlled more mosquitoes than the fruit-based ATSB, and ASB. Mosquitoes were exposed to D-ATSB and the two controls for 48 h and collected with BGS traps. The catch rates of the BGS traps were compared to determine efficacy of the D-ATSB. Results: During olfactometer evaluations of D-ATSB, Ae. aegypti mosquitoes were more attracted to 1% LA and 1% O compared to the fruit-based toxic sugar bait alone. Both species of mosquito consumed more fruit-based non-toxic bait (ASB) and ATSB than the D-ATSB. For both species, percent mortality bioassays indicated D-ATSB controlled mosquitoes, as compared to non-toxic control, but not more than the fruit based ATSB. Semi-field evaluations, BioGents sentinel traps at 48 h confirmed that ATSB (positive control) controlled Ae. albopictus, but there was no statistical difference between ASB (negative control) and the D-ATSB. No differences were observed between the mosquitoes caught in any of the experimental formulations for Ae. aegypti. Conclusions: L-lactic (1%) and 1-octen-3-ol (1%) added to a fruit-based sugar bait increased attraction of Ae. aegypti and may have future implications in mosquito trapping devices. The addition of the host kairomones did not enhance the consumption and efficacy of the ATSB in laboratory or semi-field evaluations for both mosquito species. We attribute to the absence of other host cues leading to lack of alighting onto bait surfaces to imbibe the toxic bait, as well as a possible decrease in palatability of the bait caused by the addition of the host kairomones.
KW - Dual attractant bait
KW - Mosquito lure
KW - Olfaction
KW - Oral insecticide
KW - Sugar baits
UR - http://www.scopus.com/inward/record.url?scp=85008343532&partnerID=8YFLogxK
U2 - 10.1186/s13071-016-1937-z
DO - 10.1186/s13071-016-1937-z
M3 - Article
C2 - 28057066
AN - SCOPUS:85008343532
SN - 1756-3305
VL - 10
JO - Parasites and Vectors
JF - Parasites and Vectors
IS - 1
M1 - 9
ER -