TY - JOUR
T1 - External validation and longitudinal application of the DO-GAP index to individualise survival prediction in idiopathic pulmonary fibrosis
AU - Chandel, Abhimanyu
AU - King, Christopher S.
AU - Ignacio, Rosalinda V.
AU - Pastre, Jean
AU - Shlobin, Oksana A.
AU - Khangoora, Vikramjit
AU - Aryal, Shambhu
AU - Nyquist, Alan
AU - Singhal, Anju
AU - Flaherty, Kevin R.
AU - Nathan, Steven D.
N1 - Publisher Copyright:
© The authors 2023.
PY - 2023/5/1
Y1 - 2023/5/1
N2 - Background The Distance-Oxygen-Gender-Age-Physiology (DO-GAP) index has been shown to improve prognostication in idiopathic pulmonary fibrosis (IPF) compared to the Gender-Age-Physiology (GAP) score. We sought to externally validate the DO-GAP index compared to the GAP index for baseline risk assessment in patients with IPF. Additionally, we evaluated the utility of serial change in the DO-GAP index in predicting survival. Methods We performed an analysis of patients with IPF from the Pulmonary Fibrosis Foundation-Patient Registry (PFF-PR). Discrimination and calibration of the two models were assessed to predict transplant-free survival and IPF-related mortality. Joint longitudinal time-to-event modelling was utilised to individualise survival prediction based on DO-GAP index trajectory. Results There were 516 patients with IPF from the PFF-PR with available demographics, pulmonary function tests, 6-min walk test data and outcomes included in this analysis. The DO-GAP index (C-statistic: 0.73) demonstrated improved discrimination in discerning transplant-free survival compared to the GAP index (C-statistic: 0.67). DO-GAP index calibration was adequate, and the model retained predictive accuracy to identify IPF-related mortality (C-statistic: 0.74). The DO-GAP index was similarly accurate in the subset of patients taking antifibrotic medications. Serial change in the DO-GAP index improved model discrimination (cross-validated area under the curve: 0.83) enabling the personalised prediction of disease trajectory in individual patients. Conclusion The DO-GAP index is a simple, validated, multidimensional score that accurately predicts transplant-free survival in patients with IPF and can be adapted longitudinally in individual patients. The DO-GAP may also find use in studies of IPF to risk stratify patients and possibly as a clinical trial end-point.
AB - Background The Distance-Oxygen-Gender-Age-Physiology (DO-GAP) index has been shown to improve prognostication in idiopathic pulmonary fibrosis (IPF) compared to the Gender-Age-Physiology (GAP) score. We sought to externally validate the DO-GAP index compared to the GAP index for baseline risk assessment in patients with IPF. Additionally, we evaluated the utility of serial change in the DO-GAP index in predicting survival. Methods We performed an analysis of patients with IPF from the Pulmonary Fibrosis Foundation-Patient Registry (PFF-PR). Discrimination and calibration of the two models were assessed to predict transplant-free survival and IPF-related mortality. Joint longitudinal time-to-event modelling was utilised to individualise survival prediction based on DO-GAP index trajectory. Results There were 516 patients with IPF from the PFF-PR with available demographics, pulmonary function tests, 6-min walk test data and outcomes included in this analysis. The DO-GAP index (C-statistic: 0.73) demonstrated improved discrimination in discerning transplant-free survival compared to the GAP index (C-statistic: 0.67). DO-GAP index calibration was adequate, and the model retained predictive accuracy to identify IPF-related mortality (C-statistic: 0.74). The DO-GAP index was similarly accurate in the subset of patients taking antifibrotic medications. Serial change in the DO-GAP index improved model discrimination (cross-validated area under the curve: 0.83) enabling the personalised prediction of disease trajectory in individual patients. Conclusion The DO-GAP index is a simple, validated, multidimensional score that accurately predicts transplant-free survival in patients with IPF and can be adapted longitudinally in individual patients. The DO-GAP may also find use in studies of IPF to risk stratify patients and possibly as a clinical trial end-point.
UR - http://www.scopus.com/inward/record.url?scp=85160089736&partnerID=8YFLogxK
U2 - 10.1183/23120541.00124-2023
DO - 10.1183/23120541.00124-2023
M3 - Article
AN - SCOPUS:85160089736
SN - 2312-0541
VL - 9
JO - ERJ Open Research
JF - ERJ Open Research
IS - 3
M1 - 00124-2023
ER -