TY - JOUR
T1 - Extracellular Matrix Degradation Products Downregulate Neoplastic Esophageal Cell Phenotype
AU - Saldin, Lindsey T.
AU - Patel, Shil
AU - Zhang, Li
AU - Huleihel, Luai
AU - Hussey, George S.
AU - Nascari, David G.
AU - Quijano, Lina M.
AU - Li, Xue
AU - Raghu, Divya
AU - Bajwa, Anant K.
AU - Smith, Nicholas G.
AU - Chung, Christopher C.
AU - Omstead, Ashten N.
AU - Kosovec, Juliann E.
AU - Jobe, Blair A.
AU - Turner, Neill J.
AU - Zaidi, Ali H.
AU - Badylak, Stephen F.
N1 - Publisher Copyright:
© Copyright 2019, Mary Ann Liebert, Inc., publishers 2019.
PY - 2019/3
Y1 - 2019/3
N2 - Extracellular matrix (ECsM) bioscaffolds have been successfully used to treat five esophageal adenocarcinoma (EAC) patients following resection of neoplastic mucosal tissue. The present study evaluated the in vitro effect of ECM harvested from nonmalignant, decellularized tissue on EAC cell phenotype to understand the molecular mechanisms underlying the clinical findings. Nonmalignant (Het-1A), metaplastic (CP-A), and neoplastic (SK-GT-4, OE33) esophageal epithelial cells were exposed to ECM degradation products (250 μg/mL) prepared from heterologous urinary bladder tissue or homologous esophageal mucosa tissue, and evaluated for cell morphology, cell function, and EAC signaling pathways. Both the ECM sources downregulated neoplastic cell phenotype, but had distinctive tissue-specific effects. Urinary bladder ECM decreased OE33 and SK-GT-4 metabolism and increased CP-A apoptosis. Esophageal ECM decreased SK-GT-4, CP-A, and Het-1A proliferation; robustly downregulated PI3K-Akt-mTOR, cell cycle/DNA replication signaling, and upregulated autophagy signaling in OE33 cells; and increased cell cycle/DNA replication signaling in Het-1A cells. Both ECM sources decreased OE33 proliferation and phosphorylated AKT in OE33 cells, and in contrast, increased phosphorylated AKT in Het-1A cells. The results support the concept that the biochemical signals in nonmalignant ECM can downregulate neoplastic cell phenotype with minimal, and sometimes opposite, effects on normal cells. PI3K-Akt signaling has been implicated in EAC progression and these ECM-mediated effects may be favorable for an esophageal therapy following cancer resection. Extracellular matrix (ECM) biomaterials were used to treat esophageal cancer patients after cancer resection and promoted regrowth of normal mucosa without recurrence of cancer. The present study investigates the mechanisms by which these materials were successful to prevent the cancerous phenotype. ECM downregulated neoplastic esophageal cell function (proliferation, metabolism), but normal esophageal epithelial cells were unaffected in vitro, and suggests a molecular basis (downregulation of PI3K-Akt, cell cycle) for the promising clinical results. The therapeutic effect appeared to be enhanced using homologous esophageal ECM. This study suggests that ECM can be further investigated to treat cancer patients after resection or in combination with targeted therapy.
AB - Extracellular matrix (ECsM) bioscaffolds have been successfully used to treat five esophageal adenocarcinoma (EAC) patients following resection of neoplastic mucosal tissue. The present study evaluated the in vitro effect of ECM harvested from nonmalignant, decellularized tissue on EAC cell phenotype to understand the molecular mechanisms underlying the clinical findings. Nonmalignant (Het-1A), metaplastic (CP-A), and neoplastic (SK-GT-4, OE33) esophageal epithelial cells were exposed to ECM degradation products (250 μg/mL) prepared from heterologous urinary bladder tissue or homologous esophageal mucosa tissue, and evaluated for cell morphology, cell function, and EAC signaling pathways. Both the ECM sources downregulated neoplastic cell phenotype, but had distinctive tissue-specific effects. Urinary bladder ECM decreased OE33 and SK-GT-4 metabolism and increased CP-A apoptosis. Esophageal ECM decreased SK-GT-4, CP-A, and Het-1A proliferation; robustly downregulated PI3K-Akt-mTOR, cell cycle/DNA replication signaling, and upregulated autophagy signaling in OE33 cells; and increased cell cycle/DNA replication signaling in Het-1A cells. Both ECM sources decreased OE33 proliferation and phosphorylated AKT in OE33 cells, and in contrast, increased phosphorylated AKT in Het-1A cells. The results support the concept that the biochemical signals in nonmalignant ECM can downregulate neoplastic cell phenotype with minimal, and sometimes opposite, effects on normal cells. PI3K-Akt signaling has been implicated in EAC progression and these ECM-mediated effects may be favorable for an esophageal therapy following cancer resection. Extracellular matrix (ECM) biomaterials were used to treat esophageal cancer patients after cancer resection and promoted regrowth of normal mucosa without recurrence of cancer. The present study investigates the mechanisms by which these materials were successful to prevent the cancerous phenotype. ECM downregulated neoplastic esophageal cell function (proliferation, metabolism), but normal esophageal epithelial cells were unaffected in vitro, and suggests a molecular basis (downregulation of PI3K-Akt, cell cycle) for the promising clinical results. The therapeutic effect appeared to be enhanced using homologous esophageal ECM. This study suggests that ECM can be further investigated to treat cancer patients after resection or in combination with targeted therapy.
KW - cell/matrix interaction
KW - dynamic reciprocity
KW - esophageal cancer
KW - extracellular matrix bioscaffold
KW - gene expression
UR - http://www.scopus.com/inward/record.url?scp=85064588708&partnerID=8YFLogxK
U2 - 10.1089/ten.tea.2018.0105
DO - 10.1089/ten.tea.2018.0105
M3 - Article
C2 - 30259795
AN - SCOPUS:85064588708
SN - 1937-3341
VL - 25
SP - 487
EP - 498
JO - Tissue Engineering - Part A.
JF - Tissue Engineering - Part A.
IS - 5-6
ER -