TY - JOUR
T1 - Fibroblastic reticular cell-derived exosomes are a promising therapeutic approach for septic acute kidney injury
AU - Li, Yiming
AU - Hu, Chang
AU - Zhai, Pan
AU - Zhang, Jing
AU - Jiang, Jun
AU - Suo, Jinmeng
AU - Hu, Bo
AU - Wang, Jing
AU - Weng, Xiaocheng
AU - Zhou, Xiang
AU - Billiar, Timothy R.
AU - Kellum, John A.
AU - Deng, Meihong
AU - Peng, Zhiyong
N1 - Publisher Copyright:
© 2023 International Society of Nephrology
PY - 2024/3
Y1 - 2024/3
N2 - Sepsis-induced acute kidney injury (S-AKI) is highly lethal, and effective drugs for treatment are scarce. Previously, we reported the robust therapeutic efficacy of fibroblastic reticular cells (FRCs) in sepsis. Here, we demonstrate the ability of FRC-derived exosomes (FRC-Exos) to improve C57BL/6 mouse kidney function following cecal ligation and puncture-induced sepsis. In vivo imaging confirmed that FRC-Exos homed to injured kidneys. RNA-Seq analysis of FRC-Exo-treated primary kidney tubular cells (PKTCs) revealed that FRC-Exos influenced PKTC fate in the presence of lipopolysaccharide (LPS). FRC-Exos promoted kinase PINK1-dependent mitophagy and inhibited NLRP3 inflammasome activation in LPS-stimulated PKTCs. To dissect the mechanism underlying the protective role of Exos in S-AKI, we examined the proteins within Exos by mass spectrometry and found that CD5L was the most upregulated protein in FRC-Exos compared to macrophage-derived Exos. Recombinant CD5L treatment in vitro attenuated kidney cell swelling and surface bubble formation after LPS stimulation. FRCs were infected with a CD5L lentivirus to increase CD5L levels in FRC-Exos, which were then modified in vitro with the kidney tubular cell targeting peptide LTH, a peptide that binds to the biomarker protein kidney injury molecule-1 expressed on injured tubule cells, to enhance binding specificity. Compared with an equivalent dose of recombinant CD5L, the modified CD5L-enriched FRC-Exos selectively bound PKTCs, promoted kinase PINK-ubiquitin ligase Parkin-mediated mitophagy, inhibiting pyroptosis and improved kidney function by hindering NLRP3 inflammasome activation, thereby improving the sepsis survival rate. Thus, strategies to modify FRC-Exos could be a new avenue in developing therapeutics against kidney injury.
AB - Sepsis-induced acute kidney injury (S-AKI) is highly lethal, and effective drugs for treatment are scarce. Previously, we reported the robust therapeutic efficacy of fibroblastic reticular cells (FRCs) in sepsis. Here, we demonstrate the ability of FRC-derived exosomes (FRC-Exos) to improve C57BL/6 mouse kidney function following cecal ligation and puncture-induced sepsis. In vivo imaging confirmed that FRC-Exos homed to injured kidneys. RNA-Seq analysis of FRC-Exo-treated primary kidney tubular cells (PKTCs) revealed that FRC-Exos influenced PKTC fate in the presence of lipopolysaccharide (LPS). FRC-Exos promoted kinase PINK1-dependent mitophagy and inhibited NLRP3 inflammasome activation in LPS-stimulated PKTCs. To dissect the mechanism underlying the protective role of Exos in S-AKI, we examined the proteins within Exos by mass spectrometry and found that CD5L was the most upregulated protein in FRC-Exos compared to macrophage-derived Exos. Recombinant CD5L treatment in vitro attenuated kidney cell swelling and surface bubble formation after LPS stimulation. FRCs were infected with a CD5L lentivirus to increase CD5L levels in FRC-Exos, which were then modified in vitro with the kidney tubular cell targeting peptide LTH, a peptide that binds to the biomarker protein kidney injury molecule-1 expressed on injured tubule cells, to enhance binding specificity. Compared with an equivalent dose of recombinant CD5L, the modified CD5L-enriched FRC-Exos selectively bound PKTCs, promoted kinase PINK-ubiquitin ligase Parkin-mediated mitophagy, inhibiting pyroptosis and improved kidney function by hindering NLRP3 inflammasome activation, thereby improving the sepsis survival rate. Thus, strategies to modify FRC-Exos could be a new avenue in developing therapeutics against kidney injury.
KW - CD5L
KW - NLRP3 inflammasome
KW - exosome
KW - mitophagy
KW - sepsis-induced acute kidney injury
UR - http://www.scopus.com/inward/record.url?scp=85183663123&partnerID=8YFLogxK
U2 - 10.1016/j.kint.2023.12.007
DO - 10.1016/j.kint.2023.12.007
M3 - Article
C2 - 38163633
AN - SCOPUS:85183663123
SN - 0085-2538
VL - 105
SP - 508
EP - 523
JO - Kidney International
JF - Kidney International
IS - 3
ER -