TY - JOUR
T1 - Functional determinants of human enteric α-defensin HD5
T2 - Crucial role for hydrophobicity at dimer interface
AU - Rajabi, Mohsen
AU - Ericksen, Bryan
AU - Wu, Xueji
AU - De Leeuw, Erik
AU - Zhao, Le
AU - Pazgier, Marzena
AU - Lu, Wuyuan
PY - 2012/6/22
Y1 - 2012/6/22
N2 - Human α-defensins are cationic peptides that self-associate into dimers and higher-order oligomers. They bind protein toxins, such as anthrax lethal factor (LF), and kill bacteria, including Escherichia coli and Staphylococcus aureus, among other functions. There are six members of the human α-defensin family: four human neutrophil peptides, including HNP1, and two enteric human defensins, including HD5. We subjected HD5 to comprehensive alanine scanning mutagenesis. We then assayed LF binding by surface plasmon resonance, LF activity by enzyme kinetic inhibition, and antibacterial activity by the virtual colony count assay. Most mutations could be tolerated, resulting in activity comparable with that of wild type HD5. However, the L29A mutation decimated LF binding and bactericidal activity against Escherichia coli and Staphylococcus aureus. A series of unnatural aliphatic and aromatic substitutions at position 29, including aminobutyric acid (Abu) and norleucine (Nle) correlated hydrophobicity with HD5 function. The crystal structure of L29Abu-HD5 depicted decreased hydrophobic contacts at the dimer interface, whereas the Nle-29-HD5 crystal structure depicted a novel mode of dimerization with parallel β strands. The effect of mutating Leu 29 is similar to that of a C-terminal hydrophobic residue of HNP1, Trp26. In addition, in order to further clarify the role of dimerization in HD5 function, an obligate monomer was generated by N-methylation of the Glu21 residue, decreasing LF binding and antibacterial activity against S. aureus. These results further characterize the dimer interface of the α-defensins, revealing a crucial role of hydrophobicity-mediated dimerization.
AB - Human α-defensins are cationic peptides that self-associate into dimers and higher-order oligomers. They bind protein toxins, such as anthrax lethal factor (LF), and kill bacteria, including Escherichia coli and Staphylococcus aureus, among other functions. There are six members of the human α-defensin family: four human neutrophil peptides, including HNP1, and two enteric human defensins, including HD5. We subjected HD5 to comprehensive alanine scanning mutagenesis. We then assayed LF binding by surface plasmon resonance, LF activity by enzyme kinetic inhibition, and antibacterial activity by the virtual colony count assay. Most mutations could be tolerated, resulting in activity comparable with that of wild type HD5. However, the L29A mutation decimated LF binding and bactericidal activity against Escherichia coli and Staphylococcus aureus. A series of unnatural aliphatic and aromatic substitutions at position 29, including aminobutyric acid (Abu) and norleucine (Nle) correlated hydrophobicity with HD5 function. The crystal structure of L29Abu-HD5 depicted decreased hydrophobic contacts at the dimer interface, whereas the Nle-29-HD5 crystal structure depicted a novel mode of dimerization with parallel β strands. The effect of mutating Leu 29 is similar to that of a C-terminal hydrophobic residue of HNP1, Trp26. In addition, in order to further clarify the role of dimerization in HD5 function, an obligate monomer was generated by N-methylation of the Glu21 residue, decreasing LF binding and antibacterial activity against S. aureus. These results further characterize the dimer interface of the α-defensins, revealing a crucial role of hydrophobicity-mediated dimerization.
UR - http://www.scopus.com/inward/record.url?scp=84862679509&partnerID=8YFLogxK
U2 - 10.1074/jbc.M112.367995
DO - 10.1074/jbc.M112.367995
M3 - Article
C2 - 22573326
AN - SCOPUS:84862679509
SN - 0021-9258
VL - 287
SP - 21615
EP - 21627
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 26
ER -