TY - JOUR
T1 - Functional Hearing Difficulties in Blast-Exposed Service Members With Normal to Near-Normal Hearing Thresholds
AU - Grant, Ken W.
AU - Phatak, Sandeep A.
AU - Myers, Jennifer R.
AU - Jenkins, Kimberly A.
AU - Kubli, Lina R.
AU - Brungart, Douglas S.
N1 - Publisher Copyright:
© 2024 Lippincott Williams and Wilkins. All rights reserved.
PY - 2024/1/1
Y1 - 2024/1/1
N2 - Objectives: Estimated prevalence of functional hearing and communication deficits (FHCDs), characterized by abnormally low speech recognition and binaural tone detection in noise or an abnormally high degree of self-perceived hearing difficulties, dramatically increases in active-duty service members (SMs) who have hearing thresholds slightly above the normal range and self-report to have been close to an explosive blast. Knowing the exact nature of the underlying auditory-processing deficits that contribute to FHCD would not only provide a better characterization of the effects of blast exposure on the human auditory system, but also allow clinicians to prescribe appropriate therapies to treat or manage patient complaints. Design: Two groups of SMs were initially recruited: (1) a control group (N = 78) with auditory thresholds ≤20 dB HL between 250 and 8000 Hz, no history of blast exposure, and who passed a short FHCD screener, and (2) a group of blast-exposed SMs (N = 26) with normal to near-normal auditory thresholds between 250 and 4000 Hz, and who failed the FHCD screener (cutoffs based on the study by Grant et al.). The two groups were then compared on a variety of audiometric, behavioral, cognitive, and electrophysiological measures. These tests were selected to characterize various aspects of auditory system processing from the cochlear to the cortex. A third, smaller group of blast-exposed SMs who performed within normal limits on the FHCD screener were also recruited (N = 11). This third subject group was unplanned at the onset of the study and was added to evaluate the effects of blast exposure on hearing and communication regardless of performance on the FHCD screener. Results: SMs in the blast-exposed group with FHCD performed significantly worse than control participants on several metrics that measured peripheral and mostly subcortical auditory processing. Cognitive processing was mostly unaffected by blast exposure with the exception of cognitive tests of language-processing speed and working memory. Blast-exposed SMs without FHCD performed similarly to the control group on tests of peripheral and brainstem processing, but performed similarly to blast-exposed SMs with FHCD on measures of cognitive processing. Measures derived from EEG recordings of the frequency-following response revealed that blast-exposed SMs who exhibited FHCD demonstrated increased spontaneous neural activity, reduced amplitude of the envelope-following response, poor internal signal to noise ratio, reduced response stability, and an absent or delayed onset response, compared with the other two participant groups. Conclusions: Degradation in the neural encoding of acoustic stimuli is likely a major contributing factor leading to FHCD in blast-exposed SMs with normal to near-normal audiometric thresholds. Blast-exposed SMs, regardless of their performance on the FHCD screener, exhibited a deficit in language-processing speed and working memory, which could lead to difficulties in decoding rapid speech and in understanding speech in challenging speech communication settings. Further tests are needed to align these findings with clinical treatment protocols being used for patients with suspected auditory-processing disorders.
AB - Objectives: Estimated prevalence of functional hearing and communication deficits (FHCDs), characterized by abnormally low speech recognition and binaural tone detection in noise or an abnormally high degree of self-perceived hearing difficulties, dramatically increases in active-duty service members (SMs) who have hearing thresholds slightly above the normal range and self-report to have been close to an explosive blast. Knowing the exact nature of the underlying auditory-processing deficits that contribute to FHCD would not only provide a better characterization of the effects of blast exposure on the human auditory system, but also allow clinicians to prescribe appropriate therapies to treat or manage patient complaints. Design: Two groups of SMs were initially recruited: (1) a control group (N = 78) with auditory thresholds ≤20 dB HL between 250 and 8000 Hz, no history of blast exposure, and who passed a short FHCD screener, and (2) a group of blast-exposed SMs (N = 26) with normal to near-normal auditory thresholds between 250 and 4000 Hz, and who failed the FHCD screener (cutoffs based on the study by Grant et al.). The two groups were then compared on a variety of audiometric, behavioral, cognitive, and electrophysiological measures. These tests were selected to characterize various aspects of auditory system processing from the cochlear to the cortex. A third, smaller group of blast-exposed SMs who performed within normal limits on the FHCD screener were also recruited (N = 11). This third subject group was unplanned at the onset of the study and was added to evaluate the effects of blast exposure on hearing and communication regardless of performance on the FHCD screener. Results: SMs in the blast-exposed group with FHCD performed significantly worse than control participants on several metrics that measured peripheral and mostly subcortical auditory processing. Cognitive processing was mostly unaffected by blast exposure with the exception of cognitive tests of language-processing speed and working memory. Blast-exposed SMs without FHCD performed similarly to the control group on tests of peripheral and brainstem processing, but performed similarly to blast-exposed SMs with FHCD on measures of cognitive processing. Measures derived from EEG recordings of the frequency-following response revealed that blast-exposed SMs who exhibited FHCD demonstrated increased spontaneous neural activity, reduced amplitude of the envelope-following response, poor internal signal to noise ratio, reduced response stability, and an absent or delayed onset response, compared with the other two participant groups. Conclusions: Degradation in the neural encoding of acoustic stimuli is likely a major contributing factor leading to FHCD in blast-exposed SMs with normal to near-normal audiometric thresholds. Blast-exposed SMs, regardless of their performance on the FHCD screener, exhibited a deficit in language-processing speed and working memory, which could lead to difficulties in decoding rapid speech and in understanding speech in challenging speech communication settings. Further tests are needed to align these findings with clinical treatment protocols being used for patients with suspected auditory-processing disorders.
KW - Auditory-processing deficits
KW - Blast exposure
KW - Noise-induced hearing loss
KW - Temporary threshold shifts
UR - http://www.scopus.com/inward/record.url?scp=85179603010&partnerID=8YFLogxK
U2 - 10.1097/AUD.0000000000001407
DO - 10.1097/AUD.0000000000001407
M3 - Article
C2 - 37599415
AN - SCOPUS:85179603010
SN - 0196-0202
VL - 45
SP - 130
EP - 141
JO - Ear and Hearing
JF - Ear and Hearing
IS - 1
ER -