Fuzzy clustering with spatial constraints

Dzung L. Pham*

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

104 Scopus citations

Abstract

A novel approach to fuzzy clustering for image segmentation is described. The fuzzy C-means objective function is generalized to include a spatial penalty on the membership functions. The penalty term leads to an iterative algorithm that is only slightly different from the original fuzzy C-means algorithm and allows the estimation of spatially smooth membership functions. To determine the strength of the penalty term, a criterion based on cross-validation is employed. The new algorithm is applied to simulated and real magnetic resonance images and is shown to be more robust to noise and other artifacts than the standard algorithm.

Original languageEnglish
PagesII/65-II/68
StatePublished - 2002
EventInternational Conference on Image Processing (ICIP'02) - Rochester, NY, United States
Duration: 22 Sep 200225 Sep 2002

Conference

ConferenceInternational Conference on Image Processing (ICIP'02)
Country/TerritoryUnited States
CityRochester, NY
Period22/09/0225/09/02

Cite this